咨询与建议

限定检索结果

文献类型

  • 4,506 篇 会议
  • 4,205 篇 期刊文献
  • 182 册 图书

馆藏范围

  • 8,893 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 5,730 篇 工学
    • 4,148 篇 计算机科学与技术...
    • 3,437 篇 软件工程
    • 1,027 篇 信息与通信工程
    • 980 篇 控制科学与工程
    • 710 篇 生物工程
    • 625 篇 电气工程
    • 566 篇 光学工程
    • 492 篇 生物医学工程(可授...
    • 447 篇 机械工程
    • 394 篇 电子科学与技术(可...
    • 276 篇 化学工程与技术
    • 246 篇 仪器科学与技术
    • 178 篇 土木工程
    • 164 篇 建筑学
    • 145 篇 材料科学与工程(可...
    • 136 篇 交通运输工程
    • 123 篇 网络空间安全
  • 3,105 篇 理学
    • 1,622 篇 数学
    • 899 篇 物理学
    • 836 篇 生物学
    • 573 篇 统计学(可授理学、...
    • 332 篇 化学
    • 261 篇 系统科学
  • 1,467 篇 管理学
    • 763 篇 管理科学与工程(可...
    • 756 篇 图书情报与档案管...
    • 324 篇 工商管理
  • 390 篇 医学
    • 320 篇 临床医学
    • 251 篇 基础医学(可授医学...
    • 168 篇 药学(可授医学、理...
  • 182 篇 法学
    • 164 篇 社会学
  • 98 篇 教育学
  • 90 篇 农学
  • 84 篇 经济学
  • 22 篇 文学
  • 10 篇 艺术学
  • 9 篇 军事学
  • 4 篇 哲学
  • 2 篇 历史学

主题

  • 409 篇 artificial intel...
  • 305 篇 computer science
  • 246 篇 semantics
  • 230 篇 laboratories
  • 155 篇 deep learning
  • 146 篇 feature extracti...
  • 144 篇 training
  • 129 篇 machine learning
  • 126 篇 computational mo...
  • 101 篇 robot sensing sy...
  • 100 篇 contrastive lear...
  • 99 篇 image segmentati...
  • 99 篇 computer vision
  • 96 篇 visualization
  • 94 篇 reinforcement le...
  • 90 篇 optimization
  • 88 篇 robustness
  • 86 篇 object detection
  • 86 篇 speech recogniti...
  • 84 篇 cameras

机构

  • 279 篇 computer science...
  • 225 篇 shanghai artific...
  • 160 篇 computer science...
  • 152 篇 computer science...
  • 139 篇 mit computer sci...
  • 117 篇 peng cheng labor...
  • 113 篇 computer science...
  • 102 篇 computer science...
  • 96 篇 school of comput...
  • 90 篇 college of compu...
  • 88 篇 school of artifi...
  • 88 篇 mit computer sci...
  • 82 篇 institute of art...
  • 74 篇 moe key lab of a...
  • 74 篇 mit computer sci...
  • 73 篇 school of comput...
  • 73 篇 gaoling school o...
  • 68 篇 department of co...
  • 66 篇 school of comput...
  • 64 篇 school of artifi...

作者

  • 124 篇 glass james
  • 124 篇 daniela rus
  • 65 篇 tao dacheng
  • 63 篇 liu yang
  • 63 篇 zhao hai
  • 62 篇 demaine erik d.
  • 57 篇 barzilay regina
  • 47 篇 rus daniela
  • 43 篇 li chenglong
  • 42 篇 kaelbling leslie...
  • 40 篇 james glass
  • 37 篇 belinkov yonatan
  • 35 篇 zhang zhuosheng
  • 35 篇 demaine martin l...
  • 34 篇 golland polina
  • 32 篇 paulo leitão
  • 31 篇 williams brian c...
  • 31 篇 lozano-pérez tom...
  • 30 篇 lynch jayson
  • 30 篇 shen linlin

语言

  • 6,838 篇 英文
  • 1,958 篇 其他
  • 115 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 2 篇 斯洛文尼亚文
检索条件"机构=LIACC—Artificial Intelligence and Computer Science Laboratory"
8893 条 记 录,以下是661-670 订阅
排序:
Brain treebank: large-scale intracranial recordings from naturalistic language stimuli  24
Brain treebank: large-scale intracranial recordings from nat...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Christopher Wang Adam Yaari Aaditya K. Singh Vighnesh Subramaniam Dana Rosenfarb Jan DeWitt Pranav Misra Joseph R Madsen Scellig Stone Gabriel Kreiman Boris Katz Ignacio Cases Andrei Barbu Computer Science and Artificial Intelligence Laboratory MIT and Center for Brains Minds and Machines MIT Computer Science and Artificial Intelligence Laboratory MIT and Gatsby Computational Neuroscience Unit University College London Computer Science and Artificial Intelligence Laboratory MIT Center for Brains Minds and Machines MIT and Center for Brain Science Harvard University and Boston Children's Hospital Harvard Medical School Boston Children's Hospital Harvard Medical School
We present the Brain Treebank, a large-scale dataset of electrophysiological neural responses' recorded from intracranial probes while 10 subjects watched one or more Hollywood movies. Subjects watched on average ...
来源: 评论
Generating Personalized Imputations for Patient Health Status Prediction in Electronic Health Records
Generating Personalized Imputations for Patient Health Statu...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Liu, Yang Zhang, Weiyu Si, Jiasheng Li, Zhao Peng, Xueping Lu, Wenpeng Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Jinan China Evay Info Jinan China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Jinan China University of Technology Sydney Australian Artificial Intelligence Institute Sydney Australia
Electronic health records (EHRs) play a crucial role in the development of personalized treatment plans for patients. However, EHRs are often highly incomplete, posing significant challenges for predictive modeling. W... 详细信息
来源: 评论
Automatic Difficulty Balance in Two-Player Games with Deep Reinforcement Learning
Automatic Difficulty Balance in Two-Player Games with Deep R...
收藏 引用
IEEE Symposium on Computational intelligence and Games, CIG
作者: Simão Reis Rita Novais Luís Paulo Reis Nuno Lau Artificial Intelligence and Computer Science Laboratory (LIACC) Faculty of Engineering University of Porto Porto Portugal Institute of Electronics and Informatics Engineering of Aveiro (IEETA) University of Aveiro Aveiro Portugal
Regardless of the goal of a game, it should be a pleasant and fun experience for its players. For some games to be enjoyable, the level of difficulty must be carefully calibrated, otherwise, players will feel bored or...
来源: 评论
Network Security Evaluation for Space-Ground Integrated Networks Based on Network Simulation  8
Network Security Evaluation for Space-Ground Integrated Netw...
收藏 引用
8th International Conference on Data science in Cyberspace, DSC 2023
作者: Ye, Haibo Zhao, Lei Tao, Leiting Wang, Xiaofeng The 6th Research Institute of China Electronics Corporation Beijing China School of Artificial Intelligence and Computer Science Jiangnan University Wuxi China Peng Cheng Laboratory Shenzhen China
Space-ground integrated networks (SGINs) have become an important direction of future network development. However, SGINs face many security threats because of the multidimensional heterogeneity of their structure. Th... 详细信息
来源: 评论
Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction  30
Take Care of Your Prompt Bias! Investigating and Mitigating ...
收藏 引用
Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
作者: Xu, Ziyang Peng, Keqin Ding, Liang Tao, Dacheng Lu, Xiliang Institute of Artificial Intelligence School of Computer Science Wuhan University China School of Mathematics and Statistics Wuhan University China Hubei Key Laboratory of Computational Science Wuhan University China Beihang University China The University of Sydney Australia Nanyang Technological University Singapore
Recent research shows that pre-trained language models (PLMs) suffer from "prompt bias" in factual knowledge extraction, i.e., prompts tend to introduce biases toward specific labels. Prompt bias presents a ... 详细信息
来源: 评论
Semantic Data Augmentation for Few-Shot Biomedical Named Entity Recognition
Semantic Data Augmentation for Few-Shot Biomedical Named Ent...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhang, Ying Wang, Weihua College of Computer Science Inner Mongolia University Hohhot China National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian Hohhot China Inner Mongolia Key Laboratory of Multilingual Artificial Intelligence Technology Hohhot China
Biomedical Named Entity Recognition (BioNER) aims to identify and classify entities in biomedical text. This task struggles with data scarcity due to limited annotated data. Although data augmentation is effective, ex... 详细信息
来源: 评论
Distance-Adaptive Quaternion Knowledge Graph Embedding with Bidirectional Rotation  31
Distance-Adaptive Quaternion Knowledge Graph Embedding with ...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Wang, Weihua Liang, Qiuyu Bao, Feilong Gao, Guanglai College of Computer Science Inner Mongolia University Hohhot China National and Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian Hohhot China Inner Mongolia Key Laboratory of Multilingual Artificial Intelligence Technology Hohhot China
Quaternion contains one real part and three imaginary parts, which provided a more expressive hypercomplex space for learning knowledge graph. Existing quaternion embedding models measure the plausibility of a triplet... 详细信息
来源: 评论
DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Yueming Yuan, Xuening Yang, Hongyu Huang, Di School of Computer Science and Engineering Beihang University Beijing China School of Artificial Intelligence Beihang University Beijing China Shanghai Artificial Intelligence Laboratory Shanghai China
Recent advances in text-to-3D creation integrate the potent prior of Diffusion Models from text-to-image generation into 3D domain. Nevertheless, generating 3D scenes with multiple objects remains challenging. Therefo... 详细信息
来源: 评论
Enhancing Adversarial Example Transferability via Regularized Constrained Feature Layer
收藏 引用
computers, Materials & Continua 2025年 第4期83卷 157-175页
作者: Xiaoyin Yi Long Chen Jiacheng Huang Ning Yu Qian Huang School of Computer Science and Technology Chongqing University of Posts and TelecommunicationsChongqing400065China Chongqing Key Laboratory of Public Big Data Security Technology Chongqing401420China School of Cyber Security and Information Law Chongqing University of Posts and TelecommunicationsChongqing400065China Key Laboratory of Cyberspace Big Data Intelligent Security Ministry of EducationChongqing400065China Artificial Intelligence and Big Data College Chongqing Polytechnic University of Electronic TechnologyChongqing401331China
Transfer-based Adversarial Attacks(TAAs)can deceive a victim model even without prior *** is achieved by leveraging the property of adversarial *** is,when generated from a surrogate model,they retain their features i... 详细信息
来源: 评论
Progressive Self-supervised Representation Learning for 3D Facial Expression Recognition
Progressive Self-supervised Representation Learning for 3D F...
收藏 引用
IEEE International Joint Conference on Biometrics (IJCB)
作者: Hebeizi Li Hongyu Yang Di Huang School of Computer Science and Engineering Beihang University Beijing China Institute of Artificial Intelligence Beihang University Beijing China Shanghai Artificial Intelligence Laboratory Shanghai China
Facial expression recognition (FER) is a critical area of research in face analysis. While 2D data has been extensively used, 3D data offers inherent advantages, such as increased resilience to illumination and pose v... 详细信息
来源: 评论