咨询与建议

限定检索结果

文献类型

  • 1,547 篇 期刊文献
  • 1,491 篇 会议
  • 12 册 图书

馆藏范围

  • 3,050 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,067 篇 工学
    • 1,576 篇 计算机科学与技术...
    • 1,360 篇 软件工程
    • 380 篇 信息与通信工程
    • 338 篇 生物工程
    • 314 篇 控制科学与工程
    • 223 篇 生物医学工程(可授...
    • 201 篇 光学工程
    • 154 篇 电气工程
    • 151 篇 机械工程
    • 133 篇 电子科学与技术(可...
    • 108 篇 化学工程与技术
    • 62 篇 仪器科学与技术
    • 57 篇 交通运输工程
    • 54 篇 安全科学与工程
    • 50 篇 土木工程
    • 44 篇 建筑学
  • 1,149 篇 理学
    • 582 篇 数学
    • 365 篇 生物学
    • 362 篇 物理学
    • 192 篇 统计学(可授理学、...
    • 113 篇 化学
    • 109 篇 系统科学
  • 535 篇 管理学
    • 290 篇 图书情报与档案管...
    • 261 篇 管理科学与工程(可...
    • 131 篇 工商管理
  • 158 篇 医学
    • 141 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 86 篇 药学(可授医学、理...
    • 50 篇 公共卫生与预防医...
  • 86 篇 法学
    • 78 篇 社会学
  • 38 篇 教育学
  • 34 篇 经济学
  • 21 篇 农学
  • 9 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 85 篇 semantics
  • 82 篇 machine learning
  • 80 篇 training
  • 69 篇 deep learning
  • 62 篇 computational mo...
  • 48 篇 artificial intel...
  • 47 篇 reinforcement le...
  • 45 篇 accuracy
  • 41 篇 feature extracti...
  • 38 篇 computer vision
  • 36 篇 speech recogniti...
  • 35 篇 predictive model...
  • 31 篇 visualization
  • 30 篇 data models
  • 29 篇 object detection
  • 29 篇 embeddings
  • 28 篇 image segmentati...
  • 28 篇 neural networks
  • 28 篇 robustness
  • 25 篇 task analysis

机构

  • 170 篇 moe key lab of a...
  • 142 篇 department of co...
  • 59 篇 key laboratory o...
  • 51 篇 moe key lab of a...
  • 47 篇 department of co...
  • 44 篇 department of co...
  • 36 篇 computer science...
  • 36 篇 tencent ai lab
  • 36 篇 shanghai artific...
  • 36 篇 computer science...
  • 33 篇 faculty of compu...
  • 32 篇 department of co...
  • 32 篇 computer science...
  • 30 篇 institute for ar...
  • 30 篇 gaoling school o...
  • 30 篇 moe key lab of a...
  • 29 篇 shanghai jiao to...
  • 27 篇 state key lab on...
  • 27 篇 department of co...
  • 27 篇 zhejiang lab

作者

  • 121 篇 yu kai
  • 94 篇 zhao hai
  • 70 篇 yan junchi
  • 59 篇 chen lu
  • 56 篇 qian yanmin
  • 49 篇 sun maosong
  • 46 篇 ayman atia
  • 45 篇 daniela rus
  • 43 篇 liu zhiyuan
  • 41 篇 zhang zhuosheng
  • 41 篇 atia ayman
  • 37 篇 chen xie
  • 32 篇 li zuchao
  • 32 篇 yanmin qian
  • 31 篇 rus daniela
  • 29 篇 zhu su
  • 29 篇 huang minlie
  • 28 篇 yang xiaokang
  • 27 篇 junchi yan
  • 27 篇 wu mengyue

语言

  • 2,889 篇 英文
  • 147 篇 其他
  • 21 篇 中文
  • 1 篇 德文
检索条件"机构=LIACC- Artificial Intelligence and Computer Science Lab"
3050 条 记 录,以下是41-50 订阅
排序:
Beyond Touch: A Comparative Study of Gesture and Tangible Interactions for Smart Tables Using Multi-Source Data  2
Beyond Touch: A Comparative Study of Gesture and Tangible In...
收藏 引用
2nd International Conference of Intelligent Methods, Systems and Applications, IMSA 2024
作者: Ashraf, Mohamed Marzouk, Mustafa Amgad, Nadeen Atia, Ayman MSA University Faculty of Computer Science Giza Egypt Helwan University HCI-LAB Faculty of Computers and Artificial Intelligence Giza Egypt Faculty of Computer Science Giza Egypt
Understanding user interactions in smart restaurant environments is crucial for enhancing user experience and optimizing business operations. In this paper, a comparative analysis of two interactive systems was conduc... 详细信息
来源: 评论
AIMSM - A Mechanism to Optimize Systems with Multiple AI Models: A Case Study in computer Vision for Autonomous Mobile Robots  23rd
AIMSM - A Mechanism to Optimize Systems with Multiple AI M...
收藏 引用
23rd EPIA Conference on artificial intelligence, EPIA 2024
作者: Ferreira, Bruno Georgevich Sousa, Armando Jorge Reis, Luis Paulo Augusto de Sousa, António Rodrigues, Rui Rossetti, Rosaldo Edge Innovation Center Federal University of Alagoas Maceió Brazil FEUP - Faculty of Engineering of the University of Porto Porto Portugal LIACC - Member of LASI LA - Artificial Intelligence and Computer Science Laboratory Porto Portugal INESC TEC - INESC Technology and Science Porto Portugal
This article proposes the artificial intelligence Models Switching Mechanism (AIMSM), a novel approach to optimize system resource utilization by allowing systems to switch AI models during runtime in dynamic environm... 详细信息
来源: 评论
FinDABench: Benchmarking Financial Data Analysis Ability of Large Language Models  31
FinDABench: Benchmarking Financial Data Analysis Ability of ...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Liu, Shu Zhao, Shangqing Jia, Chenghao Zhuang, Xinlin Long, ZhaoGuang Zhou, Jie Zhou, Aimin Lan, Man Chong, Yang Lab of Artificial Intelligence for Education East China Normal University China Shanghai Institute of Artificial Intelligence for Education East China Normal University China School of Computer Science and Technology East China Normal University China Bytedance
Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range of tasks. However, their proficiency and reliability in the specialized domain of financial data analysis, particularly focusi...
来源: 评论
Linear Rank Intersection Types  28
Linear Rank Intersection Types
收藏 引用
28th International Conference on Types for Proofs and Programs, TYPES 2022
作者: Reis, Fábio Alves, Sandra Florido, Mário DCC-FCUP University of Porto Portugal LIACC – Artificial Intelligence and Computer Science Laboratory University of Porto Portugal CRACS INESC-TEC Centre for Research in Advanced Computing Systems Porto Portugal
Non-idempotent intersection types provide quantitative information about typed programs, and have been used to obtain time and space complexity measures. Intersection type systems characterize termination, so restrict... 详细信息
来源: 评论
Explaining Deep Learning Time Series Classification Models using a Decision Tree-Based Post-Hoc XAI Method  1
Explaining Deep Learning Time Series Classification Models u...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Mekonnen, Ephrem T. Dondio, Pierpaolo Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
This preliminary study proposes a new post hoc method to explain deep learning-based time series classification models using a decision tree. Our approach generates a decision tree graph or rulesets as an explanation,... 详细信息
来源: 评论
An examination of the effect of the inconsistency budget in weighted argumentation frameworks and their impact on the interpretation of deep neural networks  1
An examination of the effect of the inconsistency budget in ...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Vilone, Giulia Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
Explaining the logic of a data-driven Machine Learning (ML) model can be seen as a defeasible reasoning process that is likely non-monotonic. This means a conclusion linked to a set of premises can be withdrawn when n... 详细信息
来源: 评论
Real-time Detection of Taikyoku Shodan Karate Kata Poses Using Classical Machine Learning and Deep Learning Models  3
Real-time Detection of Taikyoku Shodan Karate Kata Poses Usi...
收藏 引用
3rd International Mobile, Intelligent, and Ubiquitous Computing Conference, MIUCC 2023
作者: Walid, Mazen Ameen, Mostafa Atia, Ayman Faculty of Computer Science Cairo Egypt Faculty of Computer Science Giza Egypt Helwan University HCI-LAB Faculty of Computers and Artificial Intelligence Egypt
The research discusses the necessity for a precise feedback karate training system utilizing machine learning (ML) and deep learning (DL) models to facilitate real-time pose detection by offering instantaneous and acc... 详细信息
来源: 评论
Latent space interpretation and visualisation for understanding the decisions of convolutional variational autoencoders trained with EEG topographic maps  1
Latent space interpretation and visualisation for understand...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Ahmed, Taufique Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
Learning essential features and forming simple representations of electroencephalography (EEG) signals are difficult problems. Variational autoencoders (VAEs) can be used with EEG signals to learn the salient features... 详细信息
来源: 评论
Optimizing Deep Q-Learning Experience Replay with SHAP Explanations: Exploring Minimum Experience Replay Buffer Sizes in Reinforcement Learning  1
Optimizing Deep Q-Learning Experience Replay with SHAP Expla...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Sullivan, Robert S. Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
Explainable Reinforcement Learning (xRL) faces challenges in debugging and interpreting Deep Reinforcement Learning (DRL) models. A lack of understanding for internal components like Experience Replay, which samples a... 详细信息
来源: 评论
Framework for Crack Detection using Deep Learning  1
Framework for Crack Detection using Deep Learning
收藏 引用
1st International Conference of Intelligent Methods, Systems and Applications, IMSA 2023
作者: Atta, Omar Atia, Ayman Faculty of Computer Science Giza Egypt Faculty of Computers and Artificial Intelligence HCI-LAB Helwan University Egypt
This study presents an innovative hierarchical classification approach aimed at detecting and classifying various types of road cracks. The methodology consists of three main stages: image preprocessing, binary classi... 详细信息
来源: 评论