咨询与建议

限定检索结果

文献类型

  • 325 篇 期刊文献
  • 322 篇 会议
  • 2 册 图书

馆藏范围

  • 649 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 461 篇 工学
    • 301 篇 计算机科学与技术...
    • 256 篇 软件工程
    • 95 篇 生物工程
    • 94 篇 信息与通信工程
    • 88 篇 光学工程
    • 73 篇 生物医学工程(可授...
    • 68 篇 电气工程
    • 68 篇 控制科学与工程
    • 63 篇 电子科学与技术(可...
    • 57 篇 机械工程
    • 33 篇 仪器科学与技术
    • 17 篇 化学工程与技术
    • 14 篇 材料科学与工程(可...
    • 13 篇 土木工程
    • 13 篇 交通运输工程
    • 12 篇 力学(可授工学、理...
    • 12 篇 建筑学
  • 294 篇 理学
    • 145 篇 数学
    • 104 篇 物理学
    • 100 篇 生物学
    • 41 篇 统计学(可授理学、...
    • 25 篇 系统科学
    • 20 篇 化学
  • 82 篇 管理学
    • 44 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 53 篇 医学
    • 39 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 10 篇 法学
    • 10 篇 社会学
  • 9 篇 农学
  • 6 篇 教育学
  • 3 篇 军事学
  • 1 篇 经济学
  • 1 篇 文学

主题

  • 25 篇 feature extracti...
  • 20 篇 image segmentati...
  • 19 篇 semantics
  • 16 篇 visualization
  • 16 篇 training
  • 13 篇 computer vision
  • 13 篇 image reconstruc...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 object detection
  • 11 篇 three-dimensiona...
  • 11 篇 cameras
  • 10 篇 magnetic resonan...
  • 10 篇 convolution
  • 10 篇 image classifica...
  • 9 篇 image enhancemen...
  • 9 篇 robustness
  • 8 篇 deep neural netw...
  • 8 篇 iterative method...
  • 8 篇 pattern recognit...

机构

  • 28 篇 pca lab key lab ...
  • 17 篇 pca lab key lab ...
  • 11 篇 jiangsu key lab ...
  • 11 篇 pca lab key lab ...
  • 10 篇 school of comput...
  • 10 篇 state key lab of...
  • 10 篇 school of comput...
  • 9 篇 key lab of indus...
  • 9 篇 zhejiang lab
  • 9 篇 institute of ima...
  • 8 篇 key laboratory o...
  • 8 篇 lab of image inf...
  • 7 篇 university of sc...
  • 7 篇 department of co...
  • 7 篇 key laboratory o...
  • 7 篇 department of ra...
  • 7 篇 tencent youtu la...
  • 7 篇 state key labora...
  • 7 篇 nanjing universi...
  • 6 篇 shanghai jiao to...

作者

  • 73 篇 yang jian
  • 30 篇 jian yang
  • 22 篇 xie jin
  • 17 篇 gong chen
  • 15 篇 qian jianjun
  • 15 篇 jiang haobo
  • 14 篇 li xiang
  • 12 篇 chen gong
  • 12 篇 hui le
  • 11 篇 yong man ro
  • 10 篇 bakas spyridon
  • 10 篇 wesley de neve
  • 10 篇 li jun
  • 9 篇 timofte radu
  • 8 篇 kofler florian
  • 8 篇 menze bjoern
  • 8 篇 sang nong
  • 8 篇 luo bin
  • 7 篇 hai-tao zhang
  • 7 篇 wang chengjie

语言

  • 616 篇 英文
  • 24 篇 其他
  • 8 篇 中文
  • 1 篇 日文
检索条件"机构=Lab of Image Science and Technology"
649 条 记 录,以下是321-330 订阅
排序:
Vehicle Color Recognition Based on Superpixel Features
Vehicle Color Recognition Based on Superpixel Features
收藏 引用
2019第十一届数字图像处理国际会议
作者: Qiuli Lin Feng Liu Qiang Zhao Ran Xu Jiangsu Province Key Lab on Image Processing & Image Communications Nanjing University of Posts and Telecommunications College of Educational Science and Technology Nanjing University of Posts and Telecommunications Key Lab of Broadband Wireless Communication and Sensor Network Technology Ministry of Education Nanjing University of Posts and Telecommunications
In this paper,a novel methodology is presented to settle the region of interest(ROI) detection problem in vehicle color recognition so as to remove the redundant components of vehicles that interfere greatly with colo... 详细信息
来源: 评论
Difficulty adjustable and scalable constrained multiobjective test problem toolkit
收藏 引用
Evolutionary Computation 2019年 第3期28卷 339-378页
作者: Fan, Zhun Li, Wenji Cai, Xinye Li, Hui Wei, Caimin Zhang, Qingfu Deb, Kalyanmoy Goodman, Erik Department of Electronic Engineering Shantou University Guangdong515063 China Key Lab of Digital Signal and Image Processing of Guangdong Province Guangdong China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu210016 China School of Mathematics and Statistics Xi’an Jiaotong University Shan’xi710049 China Department of Computer Science City University of Hong Kong Hong Kong BEACON Center for the Study of Evolution in Action Michigan State University East LansingMI United States
Multiobjective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, butmost of them are designed to solve unconstrained multiobjective optimization problems. In fact, many real-world multio... 详细信息
来源: 评论
Neighborhood Interval Observer Based Coordination Control for Multi-agent Systems with Disturbances ⁎
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 10994-10999页
作者: Xiaoling Wang Guo-Ping Jiang Wen Yang Housheng Su Xiaofan Wang College of Automation Nanjing University of Posts and Telecommunications Nanjing 210023 China and also with Jiangsu Engineering Lab for IOT Intelligent Robots (IOTRobot) Nanjing 210023 China Key Laboratory of Advanced Control and Optimization for Chemical Processes East China University of Science and Technology Shanghai 200237 China School of Artifcial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China Department of Automation Shanghai University Shanghai 200072 China
This paper focuses on multi-agent systems with uncertain disturbances, in which only the bounding functions on the disturbances and the bounds on the initial state of each agent are known. By designing a neighborhood ... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels
arXiv
收藏 引用
arXiv 2020年
作者: Bertram, Christof A. Veta, Mitko Marzahl, Christian Stathonikos, Nikolas Maier, Andreas Klopfleisch, Robert Aubreville, Marc Institute of Veterinary Pathology Freie Universitt Berlin Berlin Germany Medical Image Analysis Group Eindhoven University of Technology Eindhoven Netherlands Pattern Recognition Lab Computer Science Friedrich-Alexander-Universitt Erlangen-Nrnberg Erlangen Germany Department of Pathology University Medical Center Utrecht Utrecht Netherlands
Pathologist-defined labels are the gold standard for histopathological data sets, regardless of well-known limitations in consistency for some tasks. To date, some datasets on mitotic figures are available and were us... 详细信息
来源: 评论
Spatial group-wise enhance: Improving semantic feature learning in convolutional networks
arXiv
收藏 引用
arXiv 2019年
作者: Li, Xiang Hu, Xiaolin Yang, Jian Pca Lab Key Lab of Intelligent Percept. and Syst. for High-Dimensional Information of Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Momenta Department of Computer Science and Technology Tsinghua University
The Convolutional Neural Networks (CNNs) generate the feature representation of complex objects by collecting hierarchical and different parts of semantic subfeatures. These sub-features can usually be distributed in ... 详细信息
来源: 评论
Shape robust text detection with progressive scale expansion network
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Wenhai Xie, Enze Li, Xiang Hou, Wenbo Lu, Tong Yu, Gang Shao, Shuai National Key Lab for Novel Software Technology Nanjing University Department of Comuter Science and Technology Tongji University School of Computer and Engineering Nanjing University of Science and Technology Momenta Technology Inc PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Lab of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China
Scene text detection has witnessed rapid progress especially with the recent development of convolutional neural networks. However, there still exists two challenges which prevent the algorithm into industry applicati... 详细信息
来源: 评论
Selective kernel networks
arXiv
收藏 引用
arXiv 2019年
作者: Li, Xiang Wang, Wenhai Hu, Xiaolin Yang, Jian PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology China Momenta National Key Lab for Novel Software Technology Nanjing University Department of Computer Science and Technology Tsinghua University China
In standard Convolutional Neural Networks (CNNs), the receptive fields of artificial neurons in each layer are designed to share the same size. It is well-known in the neuroscience community that the receptive field s... 详细信息
来源: 评论
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Jun Xie, Ronald Ayyadhury, Shamini Ge, Cheng Gupta, Anubha Gupta, Ritu Gu, Song Zhang, Yao Lee, Gihun Kim, Joonkee Lou, Wei Li, Haofeng Upschulte, Eric Dickscheid, Timo de Almeida, José Guilherme Wang, Yixin Han, Lin Yang, Xin labagnara, Marco Gligorovski, Vojislav Scheder, Maxime Rahi, Sahand Jamal Kempster, Carly Pollitt, Alice Espinosa, Leon Mignot, Tâm Middeke, Jan Moritz Eckardt, Jan-Niklas Li, Wangkai Li, Zhaoyang Cai, Xiaochen Bai, Bizhe Greenwald, Noah F. Van Valen, David Weisbart, Erin Cimini, Beth A. Cheung, Trevor Brück, Oscar Bader, Gary D. Wang, Bo Peter Munk Cardiac Centre University Health Network TorontoON Canada Department of Laboratory Medicine and Pathobiology University of Toronto TorontoON Canada Vector Institute TorontoON Canada Department of Molecular Genetics University of Toronto TorontoON Canada Donnelly Centre University of Toronto TorontoON Canada Princess Margaret Cancer Centre University Health Network TorontoON Canada School of Medicine and Pharmacy Ocean University of China Qingdao China New Delhi India Laboratory Oncology Dr. BRA-IRCH All India Institute of Medical Sciences New Delhi India Department of Image Reconstruction Nanjing Anke Medical Technology Co. Ltd. Nanjing China Shanghai Artificial Intelligence Laboratory Shanghai China Graduate School of AI KAIST Seoul Korea Republic of Shenzhen Research Institute of Big Data Shenzhen China Shenzhen China Helmholtz AI Research Center Jülich Jülich Germany Faculty of Mathematics and Natural Sciences Institute of Computer Science Heinrich Heine University Düsseldorf Düsseldorf Germany Hinxton United Kingdom Champalimaud Foundation - Centre for the Unknown Lisbon Portugal Department of Bioengineering Stanford University Palo AltoCA United States Tandon School of Engineering New York University New YorkNY United States School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China Lausanne Switzerland School of Biological Sciences University of Reading Reading United Kingdom Laboratoire de Chimie Bactérienne CNRS Université Aix Marseille UMR Institut de Microbiologie de la Méditerranée Marseille France Department of Internal Medicine I University Hospital Dresden Technical University Dresden Dresden Germany Else Kroener Fresenius Center for Digital Health Technical University Dresden Dresden Germany Department of Automation University of Science and Technology of China Hefei China Institute of Advanced Technology University of Science and Technology of China Hefei Chi
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify ... 详细信息
来源: 评论
Feedback alfa-rooting algorithm for medical image enhancement  17
Feedback alfa-rooting algorithm for medical image enhancemen...
收藏 引用
17th image Processing: Algorithms and Systems Conference, IPAS 2019
作者: Voronin, V. Zelensky, A. Agaian, S. Don State Technical University Lab. «Mathematical Methods of Image Processing and Computer Vision Intelligent Systems» Gagarina 1 Rostov on Don Russia Moscow State University of Technology "STANKIN" Moscow Russia CUNY/ College of Staten Island Dept. of Computer Science New York United States
This paper presents a new combined local and global transform domain-based feedback image enhancement algorithm for medical diagnosis, treatment, and clinical research. The basic idea in using local alfa-rooting metho... 详细信息
来源: 评论