咨询与建议

限定检索结果

文献类型

  • 321 篇 期刊文献
  • 321 篇 会议
  • 2 册 图书

馆藏范围

  • 644 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 458 篇 工学
    • 300 篇 计算机科学与技术...
    • 255 篇 软件工程
    • 94 篇 生物工程
    • 93 篇 信息与通信工程
    • 88 篇 光学工程
    • 72 篇 生物医学工程(可授...
    • 68 篇 电气工程
    • 68 篇 控制科学与工程
    • 63 篇 电子科学与技术(可...
    • 57 篇 机械工程
    • 33 篇 仪器科学与技术
    • 17 篇 化学工程与技术
    • 14 篇 材料科学与工程(可...
    • 13 篇 交通运输工程
    • 12 篇 力学(可授工学、理...
    • 12 篇 土木工程
    • 11 篇 建筑学
  • 294 篇 理学
    • 145 篇 数学
    • 104 篇 物理学
    • 100 篇 生物学
    • 41 篇 统计学(可授理学、...
    • 25 篇 系统科学
    • 20 篇 化学
  • 83 篇 管理学
    • 44 篇 图书情报与档案管...
    • 40 篇 管理科学与工程(可...
  • 51 篇 医学
    • 39 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 11 篇 法学
    • 11 篇 社会学
  • 9 篇 农学
  • 7 篇 教育学
  • 3 篇 军事学
  • 1 篇 经济学
  • 1 篇 文学

主题

  • 25 篇 feature extracti...
  • 19 篇 semantics
  • 18 篇 image segmentati...
  • 16 篇 visualization
  • 16 篇 training
  • 13 篇 image reconstruc...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 12 篇 computer vision
  • 11 篇 object detection
  • 11 篇 three-dimensiona...
  • 11 篇 cameras
  • 10 篇 magnetic resonan...
  • 10 篇 convolution
  • 10 篇 image classifica...
  • 9 篇 robustness
  • 8 篇 image enhancemen...
  • 8 篇 deep neural netw...
  • 8 篇 iterative method...
  • 8 篇 pattern recognit...

机构

  • 28 篇 pca lab key lab ...
  • 17 篇 pca lab key lab ...
  • 11 篇 jiangsu key lab ...
  • 10 篇 school of comput...
  • 10 篇 state key lab of...
  • 10 篇 school of comput...
  • 10 篇 pca lab key lab ...
  • 9 篇 key lab of indus...
  • 9 篇 zhejiang lab
  • 9 篇 institute of ima...
  • 8 篇 key laboratory o...
  • 8 篇 lab of image inf...
  • 7 篇 university of sc...
  • 7 篇 department of co...
  • 7 篇 key laboratory o...
  • 7 篇 department of ra...
  • 7 篇 tencent youtu la...
  • 7 篇 state key labora...
  • 7 篇 nanjing universi...
  • 6 篇 shanghai jiao to...

作者

  • 71 篇 yang jian
  • 30 篇 jian yang
  • 22 篇 xie jin
  • 17 篇 gong chen
  • 15 篇 jiang haobo
  • 14 篇 qian jianjun
  • 12 篇 chen gong
  • 12 篇 li xiang
  • 11 篇 hui le
  • 11 篇 yong man ro
  • 10 篇 bakas spyridon
  • 10 篇 wesley de neve
  • 9 篇 timofte radu
  • 9 篇 li jun
  • 8 篇 kofler florian
  • 8 篇 menze bjoern
  • 8 篇 sang nong
  • 8 篇 luo bin
  • 7 篇 hai-tao zhang
  • 7 篇 wang chengjie

语言

  • 620 篇 英文
  • 15 篇 其他
  • 8 篇 中文
  • 1 篇 日文
检索条件"机构=Lab of Image Science and Technology"
644 条 记 录,以下是81-90 订阅
排序:
SEVERE++: Evaluating Benchmark Sensitivity in Generalization of Video Representation Learning
arXiv
收藏 引用
arXiv 2025年
作者: Thoker, Fida Mohammad Jiang, Letian Zhao, Chen Bagad, Piyush Doughty, Hazel Ghanem, Bernard Snoek, Cees G.M. CEMSE King Abdullah University of Science and Technology Makkah Saudi Arabia VGG University of Oxford Oxford United Kingdom LIACS Leiden University Leiden Netherlands Video & Image Sense Lab University of Amsterdam Amsterdam Netherlands
Continued advances in self-supervised learning have led to significant progress in video representation learning, offering a scalable alternative to supervised approaches by eliminating the need for manual annotations... 详细信息
来源: 评论
Many-to-Many Transfer Learning on Motor imagery BCI
Many-to-Many Transfer Learning on Motor Imagery BCI
收藏 引用
Decision Aid sciences and Application (DASA), International Conference on
作者: Fatih Altindiş Bülent Yilmaz Marco Congedo Electrical and Electronic Engineering Abdullah Gül University Kayseri Turkey Electrical Engineering Gulf University for Science and Technology Hawally Kuwait Grenoble-Image-sPeach-Signal-Automatics Lab GIPSA-lab University of Grenoble Alpes CNRS Grenoble France
This paper presents many-to-many domain adaptation strategy, named group learning, for motor imagery brain-computer interfaces (BCIs). Group learning, grounded in Riemannian geometry, simultaneously aligns multiple do... 详细信息
来源: 评论
Tiny noise, big mistakes: adversarial perturbations induce errors in brain–computer interface spellers
收藏 引用
National science Review 2021年 第4期8卷 78-90页
作者: Xiao Zhang Dongrui Wu Lieyun Ding Hanbin Luo Chin-Teng Lin Tzyy-Ping Jung Ricardo Chavarriaga Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and AutomationHuazhong University of Science and Technology School of Civil Engineering and Mechanics Huazhong University of Science and Technology Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Swartz Center for Computational Neuroscience Institute for Neural ComputationUniversity of California San Diego Center for Advanced Neurological Engineering Institute of Engineering in Medicine University of California San Diego ZHAW Data Lab Zürich University of Applied Sciences
An electroencephalogram(EEG)-based brain–computer interface(BCI) speller allows a user to input text to a computer by thought. It is particularly useful to severely disabled individuals, e.g. amyotrophic lateral scle... 详细信息
来源: 评论
SpliceMix: A Cross-scale and Semantic Blending Augmentation Strategy for Multi-label image Classification
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Wang, Lei Zhan, Yibing Ma, Leilei Tao, Dapeng Ding, Liang Gong, Chen Nanjing University of Science and Technology Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering Jiangsu Nanjing210094 China JD Explore Academy Beijing100000 China Anhui University School of Computer Science and Technology Anhui Heifei230601 China Yunnan University FIST LAB School of Information Science and Engineering Yunnan Kunming650091 China
Recently, Mix-style data augmentation methods (e.g., Mixup and CutMix) have shown promising performance in various visual tasks. However, these methods are primarily designed for single-label images, ignoring the cons... 详细信息
来源: 评论
ViTEraser: Harnessing the Power of Vision Transformers for Scene Text Removal with SegMIM Pretraining
arXiv
收藏 引用
arXiv 2023年
作者: Peng, Dezhi Liu, Chongyu Liu, Yuliang Jin, Lianwen South China University of Technology China SCUT-Zhuhai Institute of Modern Industrial Innovation China INTSIG-SCUT Joint Lab of Document Image Analysis and Recognition China Huazhong University of Science and Technology China
Scene text removal (STR) aims at replacing text strokes in natural scenes with visually coherent backgrounds. Recent STR approaches rely on iterative refinements or explicit text masks, resulting in high complexity an... 详细信息
来源: 评论
Adaptive and Background-Aware Match for Class-Agnostic Counting
SSRN
收藏 引用
SSRN 2023年
作者: Gong, Shenjian Yang, Jian Zhang, Shanshan PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Nankai University China
Class-agnostic counting (CAC) aims to count object instances in an image by simply specifying a few exemplar boxes of interest. The key challenge for CAC is how to tailor a desirable interaction between exemplar and q... 详细信息
来源: 评论
A Multi-input Deep Neural Network Framework for Non-invasive Detection of Anemia using Finger Nail images
A Multi-input Deep Neural Network Framework for Non-invasive...
收藏 引用
International Conference on Biosignals, images and Instrumentation (ICBSII)
作者: Krithika S Ajay Kumar Reddy Poreddy Thunakala Balakrishna Priyanka Kokil Department of Computer Science and Engineering Amrita Vishwa Vidyapeetham Chennai India Department of Electronics and Communication Engineering Advanced Signal and Image Processing (ASIP) Lab Indian Institute of Information Technology Design and Manufacturing Kancheepuram Chennai
Anemia, characterized by a deficiency in red blood corpuscles or hemoglobin, poses a significant global health challenge, particularly affecting vulnerable populations. Traditional diagnostic methods often involve inv... 详细信息
来源: 评论
Graph-based motion prediction for abnormal action detection  2
Graph-based motion prediction for abnormal action detection
收藏 引用
2nd ACM International Conference on Multimedia in Asia, MMAsia 2020
作者: Tang, Yao Zhao, Lin Yao, Zhaoliang Gong, Chen Yang, Jian Pca Lab Key Lab of Intelligent Percept. and Syst. for High-Dimensional Information of Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security Nanjing University of Science and Technology China
Abnormal action detection is the most noteworthy part of anomaly detection, which tries to identify unusual human behaviors in videos. Previous methods typically utilize future frame prediction to detect frames deviat... 详细信息
来源: 评论
Q-Instruct: Improving Low-Level Visual Abilities for Multi-Modality Foundation Models
Q-Instruct: Improving Low-Level Visual Abilities for Multi-M...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Haoning Wu Zicheng Zhang Erli Zhang Chaofeng Chen Liang Liao Annan Wang Kaixin Xu Chunyi Li Jingwen Hou Guangtao Zhai Geng Xue Wenxiu Sun Qiong Yan Weisi Lin S-Lab for Advanced Intelligence Institute of Image Communication and Network Engineering Shanghai Jiao Tong University Nanyang Technological University Institute for Infocomm Research (IR) Agency for Science Technology and Research (A*STAR) Singapore Sensetime Research
Multi-modality large language models (MLLMs), as represented by GPT-4V, have introduced a paradigm shift for visual perception and understanding tasks, that a variety of abilities can be achieved within one foundation... 详细信息
来源: 评论
XNLI: Explaining and Diagnosing NLI-based Visual Data Analysis
arXiv
收藏 引用
arXiv 2023年
作者: Feng, Yingchaojie Wang, Xingbo Pan, Bo Wong, Kam Kwai Ren, Yi Liu, Shi Yan, Zihan Ma, Yuxin Qu, Huamin Chen, Wei The State Key Lab of CAD & CG Zhejiang University Zhejiang Hangzhou China The Laboratory of Art and Archaeology Image Zhejiang University Ministry of Education China The Hong Kong University of Science and Technology Hong Kong The MIT Media Lab CambridgeMA United States The Department of Computer Science and Engineering Southern University of Science and Technology Guangdong China
Natural language interfaces (NLIs) enable users to flexibly specify analytical intentions in data visualization. However, diagnosing the visualization results without understanding the underlying generation process is... 详细信息
来源: 评论