咨询与建议

限定检索结果

文献类型

  • 25 篇 会议
  • 20 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 20 篇 计算机科学与技术...
    • 16 篇 软件工程
    • 6 篇 生物工程
    • 4 篇 信息与通信工程
    • 2 篇 光学工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 航空宇航科学与技...
  • 17 篇 理学
    • 6 篇 数学
    • 6 篇 物理学
    • 6 篇 生物学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 科学技术史(分学科...
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 5 篇 医学
    • 5 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 药学(可授医学、理...
  • 4 篇 教育学
    • 3 篇 心理学(可授教育学...
    • 2 篇 教育学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 历史学
    • 1 篇 世界史
  • 1 篇 艺术学

主题

  • 3 篇 computational li...
  • 2 篇 deep learning
  • 2 篇 speech processin...
  • 2 篇 semantics
  • 2 篇 machine learning
  • 2 篇 linguistics
  • 2 篇 artificial intel...
  • 1 篇 covid-19
  • 1 篇 graph neural net...
  • 1 篇 information retr...
  • 1 篇 node transfer
  • 1 篇 programming prof...
  • 1 篇 energy-efficient...
  • 1 篇 machine translat...
  • 1 篇 neurons
  • 1 篇 reproducibility
  • 1 篇 reinforcement le...
  • 1 篇 teaching
  • 1 篇 sustainable deve...
  • 1 篇 interoperability

机构

  • 3 篇 university of ke...
  • 2 篇 polyai limited u...
  • 2 篇 speech and langu...
  • 2 篇 cognitive analyt...
  • 2 篇 signal processin...
  • 2 篇 faculty of indus...
  • 2 篇 school of electr...
  • 2 篇 department of el...
  • 2 篇 chitkara univers...
  • 2 篇 department of co...
  • 2 篇 department of co...
  • 2 篇 language technol...
  • 2 篇 national enginee...
  • 1 篇 kenvak research ...
  • 1 篇 huawei technolog...
  • 1 篇 ai lab school of...
  • 1 篇 department of ps...
  • 1 篇 comparative cogn...
  • 1 篇 1120 enterprise ...
  • 1 篇 audio and speech...

作者

  • 4 篇 korhonen anna
  • 3 篇 mcloughlin ian
  • 3 篇 glavaš goran
  • 3 篇 phan huy
  • 3 篇 palaniappan rama...
  • 3 篇 nguyen truc
  • 3 篇 pham lam
  • 2 篇 reichart roi
  • 2 篇 vulić ivan
  • 2 篇 moens marie-fran...
  • 2 篇 li haizhou
  • 2 篇 karan mladen
  • 2 篇 yu pingfang
  • 2 篇 du jiali
  • 2 篇 virender kadyan
  • 2 篇 puneet bawa
  • 2 篇 rei marek
  • 2 篇 muskaan singh
  • 2 篇 tran minh
  • 2 篇 šnajder jan

语言

  • 40 篇 英文
  • 4 篇 其他
  • 3 篇 中文
检索条件"机构=Lab of Language Engineering and Computing"
46 条 记 录,以下是11-20 订阅
排序:
Classification-based self-learning for weakly supervised bilingual lexicon induction  58
Classification-based self-learning for weakly supervised bil...
收藏 引用
58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
作者: Karan, Mladen Vulić, Ivan Korhonen, Anna Glavaš, Goran TakeLab Faculty of Electrical Engineering and Computing University of Zagreb Language Technology Lab TAL University of Cambridge Data and Web Science Group University of Mannheim
Effective projection-based cross-lingual word embedding (CLWE) induction critically relies on the iterative self-learning procedure. It gradually expands the initial small seed dictionary to learn improved cross-lingu... 详细信息
来源: 评论
Machine’s Statistical Parsing and Human’s Cognitive Preference for Garden Path Sentences  2nd
Machine’s Statistical Parsing and Human’s Cognitive Prefer...
收藏 引用
2nd International Conference on Human Interaction and Emerging Technologies: Future Applications, IHIET-AI 2020
作者: Du, Jiali Yu, Pingfang Li, Xinguang Lab of Language Engineering and Computing Guangzhou China Institute of Chinese Language and Culture Guangzhou China Center for Linguistics and Applied Linguistics Guangdong University of Foreign Studies Baiyun Avenue North 2 Guangzhou510420 China
We focus in this article on the comparison between machine statistical parsing and human cognitive preference when dealing with the semantic circuit of garden path sentences. Stanford parser and 126 Chinese college st... 详细信息
来源: 评论
Test-Time Training-Free Domain Adaptation
Test-Time Training-Free Domain Adaptation
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yongxiang Feng Weihua He Kaichao You Bing Liu Ziyang Zhang Yaoyuan Wang Minglei Li Yihang Lou Jiawei Li Guoqi Li Jianxing Liao Advanced Computing and Storage Lab Huawei Technologies Co. Ltd. School of Electronics Engineering and Computer Science Peking University China Language & Speech Innovation Lab Huawei Technologies Co. Ltd. GoTen AI Lab Department of Intelligent Vision Huawei Technologies Co. Ltd. China Department of Production Automation Development Huawei Technologies Co. Ltd. China Institute of Automation Chinese Academy of Sciences China
Deploying deep learning models to new environments is very challenging. Domain adaptation (DA) is a promising paradigm to solve the problem by collecting and adapting to unlabeled data in new environments. Though rese... 详细信息
来源: 评论
Combining deep generative models and multi-lingual pretraining for semi-supervised document classification
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Yi Shareghi, Ehsan Li, Yingzhen Reichart, Roi Korhonen, Anna Language Technology Lab University of Cambridge United Kingdom Department of Data Science & AI Monash University Australia Department of Computing Imperial College London United Kingdom Faculty of Industrial Engineering and Management Technion IIT
Semi-supervised learning through deep generative models and multi-lingual pretraining techniques have orchestrated tremendous success across different areas of NLP. Nonetheless, their development has happened in isola... 详细信息
来源: 评论
Closed-Loop Safe Correction for Reinforcement Learning Policy  1
收藏 引用
4th International Conference on Ubiquitous Security, UbiSec 2024
作者: Yi, Zhi Lv, Qi Chen, Shuhong Liang, Ying Dai, Yinglong Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Hunan Normal University Changsha410081 China School of Computer Science and Cyber Engineering Guangzhou University Guangzhou510006 China Blockchain Innovation Lab Swinburne University of Technology MelbourneVIC3122 Australia Molecular Nutrition Branch National Engineering Research Center of Rice and By-product Deep Processing College of Food Science and Engineering Central South University of Forestry and Technology Hunan Changsha410004 China
Trial and error learning is an approach with uncertain consequences. How to maintain policy security, stability, and efficiency under controlled circumstances, posing a significant academic challenge. Such as Reinforc... 详细信息
来源: 评论
Node transfer with graph contrastive learning for class-imbalanced node classification
收藏 引用
Neural Networks 2025年 190卷 107674页
作者: Li, Yangding Zhao, Xiangchao Zeng, Yangyang Feng, Hao Chai, Jiawei Xie, Hao Fu, Shaobin Zhang, Shichao College of Information Science and Engineering Hunan Normal University Changsha China Hunan Provincial Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China Guangxi Key Lab of Multi-Source Information Mining and Security Guangxi Normal University Guilin China
In graph representation learning, the class imbalance problem is a significant challenge that has received much attention from academics. Although current approaches have shown promising results, they have not adequat... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Multidirectional associative optimization of function-specificword representations
arXiv
收藏 引用
arXiv 2020年
作者: Gerz, Daniela Vulic, Ivan Rei, Marek Reichart, Roi Korhonen, Anna Language Technology Lab University of Cambridge PolyAI Limited London United Kingdom Department of Computing Imperial College London Faculty of Industrial Engineering and Management Technion Iit
We present a neural framework for learning associations between interrelated groups of words such as the ones found in Subject-Verb-Object (SVO) structures. Our model induces a joint function-specific word vector spac... 详细信息
来源: 评论
Robust Deep Learning Framework for Predicting Respiratory Anomalies and Diseases  42
Robust Deep Learning Framework for Predicting Respiratory An...
收藏 引用
42nd Annual International Conferences of the IEEE engineering in Medicine and Biology Society, EMBC 2020
作者: Pham, Lam McLoughlin, Ian Phan, Huy Tran, Minh Nguyen, Truc Palaniappan, Ramaswamy University of Kent School of Computing Medway Kent United Kingdom University of Science and Technology of China National Engineering Laboratory for Speech and Language Information Processing Hefei China Queen Mary University School of Electronic Engineering and Computer Science London United Kingdom University of Oxford Nuffield Department of Anaesthesia United Kingdom Graz University of Technology Signal Processing and Speech Communication Lab Austria
This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds. The complete detection process firstly involves front end feature extraction where r... 详细信息
来源: 评论
The integration of artificial intelligence models to augment imaging modalities in pancreatic cancer
收藏 引用
Journal of Pancreatology 2020年 第4期3卷 173-180页
作者: Xianze Wang Wen Yuan Chung Elon Correa Yi Zhu Eyad Issa Ashley R.Dennison Department of Surgery Peking Union Medical College HospitalChinese Academy of Medical Science&Peking Union Medical CollegeBeijingChina Department of Hepatobiliary and Pancreatic Surgery Leicester General HospitalLeicester School of Computing Science and EngineeringUniversity of SalfordManchester Language Technology Lab University of CambridgeCambridgeUK
Pancreatic ductal adenocarcinoma(PDAC)is an aggressive malignancy with a limited number of effective *** emerging technologies such as artificial intelligence(AI)to facilitate the earlier diagnosis and decision-making... 详细信息
来源: 评论