咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 4 篇 生物工程
    • 2 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
  • 10 篇 理学
    • 7 篇 数学
    • 4 篇 生物学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
  • 3 篇 管理学
    • 2 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 4 篇 tensors
  • 2 篇 approximation al...
  • 2 篇 deep learning
  • 2 篇 machine learning
  • 2 篇 matrix decomposi...
  • 1 篇 outlier detectio...
  • 1 篇 genetic programm...
  • 1 篇 legged locomotio...
  • 1 篇 reliability
  • 1 篇 learning systems
  • 1 篇 telephone
  • 1 篇 ubiquitous
  • 1 篇 imposter
  • 1 篇 task analysis
  • 1 篇 generative adver...
  • 1 篇 anomaly detectio...
  • 1 篇 additives
  • 1 篇 search engines
  • 1 篇 lime
  • 1 篇 computational mo...

机构

  • 7 篇 lab of machine l...
  • 5 篇 machine learning...
  • 3 篇 department of te...
  • 3 篇 peoples’ friends...
  • 2 篇 college of techn...
  • 2 篇 networks and blo...
  • 1 篇 department of co...
  • 1 篇 machine learning...
  • 1 篇 school of electr...
  • 1 篇 innopolis republ...
  • 1 篇 department of in...
  • 1 篇 institutul de ce...
  • 1 篇 department of co...
  • 1 篇 cait skolkovo in...
  • 1 篇 school of comput...
  • 1 篇 department of ma...
  • 1 篇 innopolis univer...
  • 1 篇 systems research...
  • 1 篇 sorbonne center ...
  • 1 篇 college of techn...

作者

  • 6 篇 ahmadi-asl salma...
  • 3 篇 kenfack patrik j...
  • 3 篇 adil mehmood kha...
  • 3 篇 rezaeian naeim
  • 3 篇 de almeida andré...
  • 2 篇 salman ahmadi-as...
  • 2 篇 khan adil mehmoo...
  • 2 篇 khan adil
  • 2 篇 hussain rasheed
  • 2 篇 kooshkghazi mali...
  • 2 篇 joseph alexander...
  • 1 篇 muhammad ahmad
  • 1 篇 bekkouch imad ib...
  • 1 篇 adil khan
  • 1 篇 anh huy phan
  • 1 篇 ibrahim bekkouch...
  • 1 篇 ibrahim bekkouch...
  • 1 篇 liu yipeng
  • 1 篇 ibrahim youssef ...
  • 1 篇 cichocki andrzej

语言

  • 16 篇 英文
  • 3 篇 其他
检索条件"机构=Lab of Machine Learning and Knowledge Representation"
19 条 记 录,以下是1-10 订阅
排序:
Building a robust and compact search index
Building a robust and compact search index
收藏 引用
2021 International Conference "Nonlinearity, Information and Robotics", NIR 2021
作者: Savchuk, Vladislav Protasov, Stanislav Innopolis Univesity Machine learning and knowledge representation lab Innopolis Russia
With exponential data growth search engines require more memory for storage and time for search. The data is indexed to increase search speed, which requires additional memory. In this study we develop a fully functio... 详细信息
来源: 评论
Randomized block Krylov method for approximation of truncated tensor SVD
arXiv
收藏 引用
arXiv 2025年
作者: Kooshkghazi, Malihe Nobakht Ahmadi-Asl, Salman de Almeida, André L.F. Lab of Machine Learning and Knowledge Representation Innopolis University Innopolis420500 Russia Department of Teleinformatics Engineering Federal University of Ceara Fortaleza Brazil
This paper is devoted to studying the application of the block Krylov subspace method for approximation of the truncated tensor SVD (T-SVD). The theoretical results of the proposed randomized approach are presented. S... 详细信息
来源: 评论
Low-Rank Matrix and Tensor Decomposition Using Randomized Two-Sided Subspace Iteration With Application to Video Reconstruction
Low-Rank Matrix and Tensor Decomposition Using Randomized Tw...
收藏 引用
IEEE International Conference on Image Processing
作者: Maboud F. Kaloorazi Salman Ahmadi-Asl Susanto Rahardja School of Electronic Engineering Xi’an Shiyou University China Lab of Machine Learning and Knowledge Representation Innopolis University Russia Engineering Cluster Singapore Institute of Technology Singapore
The low-rank approximation of big data matrices and tensors plays a pivotal role in many modern applications. Recently, the randomized subspace iteration has shown to be a powerful tool in approximating large matrices... 详细信息
来源: 评论
Randomized algorithms for Kroncecker tensor decomposition and applications
arXiv
收藏 引用
arXiv 2024年
作者: Ahmadi-Asl, Salman Rezaeian, Naeim de Almeida, André L.F. Liu, Yipeng Lab of Machine Learning and Knowledge Representation Innopolis University Innopolis420500 Russia Peoples’ Friendship University of Russia Moscow Russia Department of Teleinformatics Engineering Federal University of Ceara Fortaleza Brazil Chengdu611731 China
This paper proposes fast randomized algorithms for computing the Kronecker Tensor Decomposition (KTD). The proposed algorithms can decompose a given tensor into the KTD format much faster than the existing state-of-th... 详细信息
来源: 评论
RepFair-GAN: Mitigating representation Bias in GANs Using Gradient Clipping
arXiv
收藏 引用
arXiv 2022年
作者: Kenfack, Patrik Joslin Sabbagh, Kamil Rivera, Adín Ramírez Khan, Adil Machine Learning and Knowledge Representation Lab Innopolis University Innopolis Russia Departments of Informatics University of Oslo Oslo Norway
Fairness has become an essential problem in many domains of machine learning (ML), such as classification, natural language processing, and Generative Adversarial Networks (GANs). In this research effort, we study the... 详细信息
来源: 评论
Domain generalization using ensemble learning
arXiv
收藏 引用
arXiv 2021年
作者: Mesbah, Yusuf Ibrahim, Youssef Youssry Khan, Adil Mehood Machine Learning and Knowledge Representation Lab Innopolis University Tatarstan Russia
Domain generalization is a sub-field of transfer learning that aims at bridging the gap between two different domains in the absence of any knowledge about the target domain. Our approach tackles the problem of a mode... 详细信息
来源: 评论
NONNEGATIVE TENSOR DECOMPOSITION VIA COLlabORATIVE NEURODYNAMIC OPTIMIZATION
arXiv
收藏 引用
arXiv 2024年
作者: Ahmadi-Asl, Salman Leplat, Valentin Phan, Anh-Huy Cichocki, Andrzej Lab of Machine Learning and Knowledge Representation Innopolis University Innopolis Russia Skolkovo Institute of Science and Technology Center for Artificial Intelligence Technology Moscow Russia Innopolis University Innopolis Russia Systems Research Institute of Polish Academy of Science Warsaw Poland
This paper introduces a novel collaborative neurodynamic model for computing nonnegative Canonical Polyadic Decomposition (CPD). The model relies on a system of recurrent neural networks to solve the underlying noncon... 详细信息
来源: 评论
Impact of Model Ensemble on the Fairness of Classifiers in machine learning
Impact of Model Ensemble on the Fairness of Classifiers in M...
收藏 引用
2021 International Conference on Applied Artificial Intelligence, ICAPAI 2021
作者: Kenfack, Patrik Joslin Khan, Adil Mehmood Ahsan Kazmi, S.M. Hussain, Rasheed Oracevic, Alma Khattak, Asad Masood Networks and Blockchain Lab Innopolis University Innopolis Russia Machine Learning and Knowledge Representation Lab Innopolis University Innopolis Russia College of Technological Innovation Zayed University Abu Dhabi United Arab Emirates
machine learning (ML) models are trained using historical data that may contain stereotypes of the society (biases). These biases will be inherently learned by the ML models which might eventually result in discrimina... 详细信息
来源: 评论
Adversarial stacked auto-encoders for fair representation learning
arXiv
收藏 引用
arXiv 2021年
作者: Kenfack, Patrik Joslin Khan, Adil Mehmood Hussain, Rasheed Kazmi, S.M. Ahsan Networks and Blockchain Lab Innopolis University Innopolis Russia Machine Learning and Knowledge Representation Lab Innopolis University Innopolis Russia
Training machine learning models with the only accuracy as a final goal may promote prejudices and discriminatory behaviors embedded in the data. One solution is to learn latent representations that fulfill specific f... 详细信息
来源: 评论
Efficient Algorithms for Low Tubal Rank Tensor Approximation with Applications to Image Compression, Super-Resolution and Deep learning
arXiv
收藏 引用
arXiv 2024年
作者: Ahmadi-Asl, Salman Rezaeian, Naeim Caiafa, Cesar F. de Almeida, André L.F. Lab of Machine Learning and Knowledge Representation Innopolis University Innopolis420500 Russia Peoples’ Friendship University of Russia Moscow Russia Instituto Argentino de Radioastronomia—CCT La Plata CONICET/CIC-PBA/UNLP Villa Elisa1894 Argentina Department of Teleinformatics Engineering Federal University of Ceara Fortaleza Brazil
In this paper we propose efficient randomized fixed-precision techniques for low tubal rank approximation of tensors. The proposed methods are faster and more efficient than the existing fixed-precision algorithms for... 详细信息
来源: 评论