咨询与建议

限定检索结果

文献类型

  • 31 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 62 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 32 篇 计算机科学与技术...
    • 15 篇 软件工程
    • 10 篇 电气工程
    • 7 篇 信息与通信工程
    • 7 篇 生物工程
    • 4 篇 控制科学与工程
    • 3 篇 化学工程与技术
    • 2 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
  • 16 篇 理学
    • 9 篇 生物学
    • 3 篇 数学
    • 3 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 10 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 6 篇 医学
    • 5 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 4 篇 文学
    • 3 篇 外国语言文学
    • 1 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 10 篇 semantics
  • 6 篇 deep learning
  • 4 篇 feature extracti...
  • 3 篇 task analysis
  • 2 篇 internet of thin...
  • 2 篇 graph neural net...
  • 2 篇 sequence tagging
  • 2 篇 false informatio...
  • 2 篇 text classificat...
  • 2 篇 rumor detection
  • 2 篇 bert
  • 2 篇 information cred...
  • 2 篇 visualization
  • 2 篇 decision trees
  • 2 篇 expert profile m...
  • 2 篇 extraction
  • 2 篇 attention mechan...
  • 2 篇 social media
  • 1 篇 covid-19
  • 1 篇 convolutionalneu...

机构

  • 8 篇 research institu...
  • 6 篇 xi an jiao tong ...
  • 5 篇 xi an jiao tong ...
  • 4 篇 johns hopkins un...
  • 4 篇 xi an jiao tong ...
  • 4 篇 shaanxi joint ke...
  • 4 篇 lab of social in...
  • 4 篇 shaanxi joint ke...
  • 3 篇 ucl dept psychol...
  • 3 篇 univ porto inst ...
  • 3 篇 royal childrens ...
  • 3 篇 res ctr neurol m...
  • 3 篇 arba minch univ ...
  • 3 篇 univ technol syd...
  • 3 篇 mario negri inst...
  • 3 篇 comenius univ in...
  • 3 篇 fed minist hlth ...
  • 3 篇 fed inst populat...
  • 3 篇 mashhad univ med...
  • 3 篇 lund univ clin e...

作者

  • 37 篇 rao yuan
  • 17 篇 wu lianwei
  • 10 篇 sun ling
  • 9 篇 nazir ambreen
  • 9 篇 yuan rao
  • 5 篇 lan yuqian
  • 4 篇 xu yifei
  • 4 篇 xue li
  • 4 篇 li xue
  • 4 篇 zhao yongqiang
  • 3 篇 garcia-basteiro ...
  • 3 篇 wang yiming
  • 3 篇 majdan marek
  • 3 篇 abdollahpour ibr...
  • 3 篇 milicevic milena...
  • 3 篇 safari hosein
  • 3 篇 haro josep maria
  • 3 篇 karami manoocheh...
  • 3 篇 vos theo
  • 3 篇 moradi-lakeh maz...

语言

  • 61 篇 英文
  • 1 篇 中文
检索条件"机构=Lab of Social Intelligence and Complex Data Processing"
62 条 记 录,以下是31-40 订阅
排序:
Adaptive Interaction Fusion Networks for Fake News Detection
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Lianwei Rao, Yuan Lab of Social Intelligence and Complex Data Processing Software School Xi’an Jiaotong University Xi’an China Xi’an China Research Institute of Xi’an Jiaotong University Shenzhen China
The majority of existing methods for fake news detection universally focus on learning and fusing various features for detection. However, the learning of various features is independent, which leads to a lack of cros... 详细信息
来源: 评论
Pre-trained Language Embedding-based Contextual Summary and Multi-scale Transmission Network for Aspect Extraction
收藏 引用
Procedia Computer Science 2020年 174卷 40-49页
作者: Cong Feng Yuan Rao Ambreen Nazir Lianwei Wu Long He Research Institute of Xi’an Jiaotong University Shenzhen China Lab of Social Intelligence and Complex Data Processing School of Software Engineering Xi’an Jiao Tong University Xi’an China Shaanxi Joint Key Laboratory for Artifact Intelligence Xi’an Jiao Tong University Xi’an China
With the development of IOT and 5G technology, people’s demand for information acquisition is more inclined to accuracy, intelligence and timeliness. How to help designer obtain the real-time information of specific ... 详细信息
来源: 评论
Expert Information Automatic Extraction for IOT Knowledge Base  7
Expert Information Automatic Extraction for IOT Knowledge Ba...
收藏 引用
7th International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)
作者: Yi, Lu Yuan, Rao Long, Sun Xue, Li Xi An Jiao Tong Univ Sch Software Lab Social Intelligence & Complex Data Proc Xian 710049 Shaanxi Peoples R China
With the rapid development of IOT technology, the requirement of effective and accurate retrieval of domain knowledge is growing. Automatically extract various information of expert from the massive web pages and gene... 详细信息
来源: 评论
Expert Information Automatic Extraction for IOT Knowledge Base
收藏 引用
Procedia Computer Science 2019年 147卷 288-294页
作者: Lu Yi Rao Yuan Sun Long Li Xue Lab of Social Intelligence & Complex Data Processing School of Software Xi’an Jiaotong University Xi’an 710049 China
With the rapid development of IOT technology, the requirement of effective and accurate retrieval of domain knowledge is growing. Automatically extract various information of expert from the massive web pages and gene... 详细信息
来源: 评论
Relation Extraction Based on Dual Attention Mechanism
Relation Extraction Based on Dual Attention Mechanism
收藏 引用
2019国际计算机前沿大会
作者: Xue Li Yuan Rao Long Sun Yi Lu Lab of Social Intelligence and Complex Data Processing School of SoftwareXi'an Jiaotong University
The traditional deep learning model has problems that the longdistance dependent information cannot be learned,and the correlation between the input and output of the model is not *** the information processing on the...
来源: 评论
DTCA: Decision tree-based co-Attention networks for explainable claim verification
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Lianwei Rao, Yuan Zhao, Yongqiang Liang, Hao Nazir, Ambreen Lab of Social Intelligence and Complexity Data Processing School of Software Engineering Xi'an Jiaotong University China China Research Institute of Xi'an Jiaotong University Shenzhen China
Recently, many methods discover effective evidence from reliable sources by appropriate neural networks for explainable claim verification, which has been widely recognized. However, in these methods, the discovery pr... 详细信息
来源: 评论
SLBCNN: A Improved Deep Learning Model for Few-Shot Charge Prediction
收藏 引用
Procedia Computer Science 2020年 174卷 32-39页
作者: Xue Li Yuan Rao Wanzhen Wang Cong Feng Research Institute of Xi’an Jiaotong University Shenzhen China Lab of Social Intelligence and Complex Data Precessiong School of Software Engineering Xi’an Jiao Tong University Xi’an China Shaanxi Joint Key Laboratory for Artifact Intelligence Xi’an Jiaotong University Xi’an China
Traditional prediction methods of legal judgment rarely work well on few-shot charge prediction task, which is intended to predict possible crimes, laws and terms according to a given few-shot case description. A majo... 详细信息
来源: 评论
Joint Event Extraction Model based on Multi-feature Fusion
收藏 引用
Procedia Computer Science 2020年 174卷 115-122页
作者: Wang Shuo Rao Yuan Fan Xiaobing Qi Jiangnan Research Institute of Xi’an Jiaotong University Shenzhen China Lab of Social Intelligence and Complex Data Precessiong School of Software Engineering Xi’an Jiao Tong University Xi’an China Shaanxi Joint Key Laboratory for Artifact Intelligence Xi’an Jiaotong University Xi’an China
Event extraction is a challenging problem in information extraction, designed to extract structured information from unstructured text. The existing event extraction methods are mostly based on the pipeline model and ... 详细信息
来源: 评论
Semantic Enhancement and Multi-level label Embedding for Chinese News Headline Classification
Semantic Enhancement and Multi-level Label Embedding for Chi...
收藏 引用
International Joint Symposium on Artificial intelligence and Natural Language processing (iSAI-NLP)
作者: Jiangnan Qi Yuan Rao Ling Sun Xiong Yang Lab of Social Intelligence and Complex Data Processing School of Software Engineering xi’an Jiao Tong University xi’an China
News headline classification is a specific example of short text classification, which aims to extract semantic information from the short text and classify it accurately. It can provide a fast classification method f... 详细信息
来源: 评论
A method of Chinese named entity recognition based on CNN-BILSTM-CRF model  1
收藏 引用
4th International Conference of Pioneer Computer Scientists, Engineers and Educators, ICPCSEE 2018
作者: Long, Sun Yuan, Rao Yi, Lu Xue, Li Lab of Social Intelligence & Complex Data Processing School of Software Xi’an Jiaotong University Xi’an710049 China
The main task of naming entity recognition is to identify the person names, location names, organization names, meaningful time, dates and other quantitative phrases and also classifying them into different categories... 详细信息
来源: 评论