咨询与建议

限定检索结果

文献类型

  • 221 篇 会议
  • 57 篇 期刊文献

馆藏范围

  • 278 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 222 篇 工学
    • 155 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 47 篇 信息与通信工程
    • 34 篇 光学工程
    • 31 篇 控制科学与工程
    • 28 篇 生物工程
    • 20 篇 电气工程
    • 18 篇 生物医学工程(可授...
    • 17 篇 机械工程
    • 14 篇 电子科学与技术(可...
    • 12 篇 仪器科学与技术
    • 12 篇 建筑学
    • 8 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 力学(可授工学、理...
  • 129 篇 理学
    • 64 篇 数学
    • 55 篇 物理学
    • 28 篇 生物学
    • 24 篇 统计学(可授理学、...
    • 7 篇 化学
    • 6 篇 系统科学
  • 47 篇 管理学
    • 31 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 10 篇 法学
    • 10 篇 社会学
  • 10 篇 医学
    • 9 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 8 篇 image segmentati...
  • 8 篇 robot sensing sy...
  • 7 篇 computer vision
  • 6 篇 cameras
  • 6 篇 switches
  • 6 篇 semantics
  • 5 篇 force
  • 5 篇 feature extracti...
  • 5 篇 estimation
  • 5 篇 robot kinematics
  • 4 篇 object detection
  • 4 篇 friction
  • 4 篇 deep neural netw...
  • 4 篇 robots
  • 4 篇 computational mo...
  • 4 篇 classification (...
  • 4 篇 torque
  • 3 篇 image enhancemen...
  • 3 篇 conferences
  • 3 篇 surface treatmen...

机构

  • 13 篇 tianjin key lab....
  • 11 篇 key laboratory o...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 8 篇 school of comput...
  • 6 篇 shandong key lab...
  • 4 篇 computer vision ...
  • 4 篇 sharif universit...
  • 3 篇 department of in...
  • 3 篇 department of el...
  • 3 篇 social robotics ...
  • 3 篇 moscow state uni...
  • 3 篇 shenzhen key lab...
  • 3 篇 university of ch...
  • 3 篇 git vision lab. ...
  • 3 篇 comput. vision l...
  • 3 篇 institute for co...
  • 3 篇 computer vision ...
  • 3 篇 computer vision ...
  • 3 篇 don state techni...

作者

  • 11 篇 sablatnig robert
  • 11 篇 danica kragic
  • 10 篇 kampel martin
  • 10 篇 yiannis karayian...
  • 10 篇 christian smith
  • 9 篇 petter ögren
  • 7 篇 akgul yusuf sina...
  • 6 篇 kragic danica
  • 5 篇 zambanini sebast...
  • 5 篇 zhang degan
  • 5 篇 rajagopalan a.n.
  • 5 篇 michele colledan...
  • 5 篇 ebrahimnezhad ho...
  • 5 篇 zhang caiming
  • 5 篇 qiao yu
  • 5 篇 diem markus
  • 4 篇 zelensky a.
  • 4 篇 hahn minsoo
  • 4 篇 kim jinsul
  • 4 篇 langs georg

语言

  • 259 篇 英文
  • 13 篇 其他
  • 5 篇 中文
  • 1 篇 土耳其文
检索条件"机构=Lab. for Computer Vision and Media Technology"
278 条 记 录,以下是31-40 订阅
排序:
Context-transformer: Tackling object confusion for few-shot detection
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Ze Wang, Yali Chen, Xianyu Liu, Jianzhuang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Huawei Noah’s Ark Lab. SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are availab.e for training detectors. A popular approach to handle this problem is transfer learning, i.e.,... 详细信息
来源: 评论
Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: Report
arXiv
收藏 引用
arXiv 2021年
作者: Ignatov, Andrey Malivenko, Grigory Plowman, David Shukla, Samarth Timofte, Radu Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Wang, Yiran Li, Xingyi Shi, Min Xian, Ke Cao, Zhiguo Du, Jin-Hua Wu, Pei-Lin Ge, Chao Yao, Jiaoyang Tu, Fangwen Li, Bo Yoo, Jung Eun Seo, Kwanggyoon Xu, Jialei Li, Zhenyu Liu, Xianming Jiang, Junjun Chen, Wei-Chi Joya, Shayan Fan, Huanhuan Kang, Zhaobing Li, Ang Feng, Tianpeng Liu, Yang Sheng, Chuannan Yin, Jian Benavides, Fausto T. Computer Vision Lab ETH Zurich Switzerland Ltd AI Witchlabs Switzerland Tencent GY-Lab China Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Nanjing Artificial Intelligence Chip Research Institute of Automation Chinese Academy of Sciences China Black Sesame Technologies Inc. Singapore Singapore Visual Media Lab KAIST Korea Republic of Harbin Institute of Technology China Peng Cheng Laboratory China Multimedia and Computer Vision Laboratory National Cheng Kung University Taiwan Samsung Research UK United Kingdom OPPO Research Institute China ETH Zurich Switzerland
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and t... 详细信息
来源: 评论
Effective fusion of deep multitasking representations for robust visual tracking
arXiv
收藏 引用
arXiv 2020年
作者: Marvasti-Zadeh, Seyed Mojtaba Ghanei-Yakhdan, Hossein Kasaei, Shohreh Nasrollahi, Kamal Moeslund, Thomas B. Department of Electrical Engineering Yazd University Yazd Iran Sharif University of Technology Tehran Iran Vision and Learning Lab. University of Alberta Edmonton Canada Department of Electrical Engineering Yazd University Yazd Iran Department of Computer Engineering Sharif University of Technology Tehran Iran Department of Architecture Design and Media Technology Aalborg University Aalborg Denmark
Visual object tracking remains an active research field in computer vision due to persisting challenges with various problem-specific factors in real-world scenes. Many existing tracking methods based on discriminativ... 详细信息
来源: 评论
Flexible social inference facilitates targeted social learning when rewards are not observable
arXiv
收藏 引用
arXiv 2022年
作者: Hawkins, Robert D. Berdahl, Andrew M. Pentland, Alex Tenenbaum, Joshua B. Goodman, Noah D. Krafft, P.M. Department of Psychology Stanford University StanfordCA United States Department of Psychology University of Wisconsin–Madison MadisonWI United States School of Aquatic and Fishery Sciences University of Washington SeattleWA United States Massachusetts Institute of Technology Media Lab. MIT CambridgeMA United States Department of Brain and Cognitive Sciences MIT CambridgeMA United States Department of Computer Science Stanford University StanfordCA United States Creative Computing Institute University of Arts London London United Kingdom
Groups coordinate more effectively when individuals are able to learn from others’ successes. But acquiring such knowledge is not always easy, especially in real-world environments where success is hidden from public... 详细信息
来源: 评论
Improvement of the Human Action Recognition Algorithm by the Pre-processing of Input Data
收藏 引用
IOP Conference Series: Materials Science and Engineering 2021年 第1期1029卷
作者: M M Zhdanova O S Balab.eva V V Voronin E A Semenishchev A A Zelensky Center for Cognitive Technology and Machine Vision Moscow State University of Technology «STANKIN» Moscow Russia Lab. «Mathematical methods of image processing and intelligent computer vision systems» Don State Technical University Rostov-on-Don Russia
The paper presents an approach to recognizing human actions using an additional preprocessing stage of input data. The growing volumes of video information do not always allow support the quality of data at a high lev...
来源: 评论
Beyond background-aware correlation filters: Adaptive context modeling by hand-crafted and deep RGB features for visual tracking
arXiv
收藏 引用
arXiv 2020年
作者: Marvasti-Zadeh, Seyed Mojtaba Ghanei-Yakhdan, Hossein Kasaei, Shohreh Department of Electrical Engineering Yazd University Yazd Iran Sharif University of Technology Tehran Iran Vision and Learning Lab. University of Alberta Edmonton Canada Department of Electrical Engineering Yazd University Yazd Iran Department of Computer Engineering Sharif University of Technology Tehran Iran
In recent years, the background-aware correlation filters have achieved a lot of research interest in the visual target tracking. However, these methods cannot suitably model the target appearance due to the exploitat... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论
The quaternion-based anisotropic gradient for the color images  17
The quaternion-based anisotropic gradient for the color imag...
收藏 引用
17th Image Processing: Algorithms and Systems Conference, IPAS 2019
作者: Voronin, V. Zelensky, A. Agaian, S. Don State Technical University Lab. «Mathematical Methods of Image Processing and Computer Vision Intelligent Systems» Gagarina 1 Rostov on Don Russia Moscow State University of Technology"STANKIN" Moscow Russia CUNY College of Staten Island Dept. of Computer Science New York United States
Image gradient, as a preprocessing step is an essential tool in image processing in many research areas such as edge detection, segmentation, smoothing, inpainting, etc. In the present paper, we develop a new gradient... 详细信息
来源: 评论
Feedback alfa-rooting algorithm for medical image enhancement  17
Feedback alfa-rooting algorithm for medical image enhancemen...
收藏 引用
17th Image Processing: Algorithms and Systems Conference, IPAS 2019
作者: Voronin, V. Zelensky, A. Agaian, S. Don State Technical University Lab. «Mathematical Methods of Image Processing and Computer Vision Intelligent Systems» Gagarina 1 Rostov on Don Russia Moscow State University of Technology "STANKIN" Moscow Russia CUNY/ College of Staten Island Dept. of Computer Science New York United States
This paper presents a new combined local and global transform domain-based feedback image enhancement algorithm for medical diagnosis, treatment, and clinical research. The basic idea in using local alfa-rooting metho... 详细信息
来源: 评论
Generating 3D TOF-MRA volumes and segmentation lab.ls using generative adversarial networks
收藏 引用
Medical Image Analysis 2022年 78卷 102396-102396页
作者: Subramaniam, Pooja Kossen, Tabea Ritter, Kerstin Hennemuth, Anja Hildebrand, Kristian Hilbert, Adam Sobesky, Jan Livne, Michelle Galinovic, Ivana Khalil, Ahmed A. Fiebach, Jochen B. Frey, Dietmar Madai, Vince I. CLAIM - Charité Lab for AI in Medicine Charité Universitätsmedizin Berlin Germany Department of Computer Engineering and Microelectronics Computer Vision & Remote Sensing Technical University Berlin Berlin Germany Berlin Germany Bernstein Center for Computational Neuroscience Berlin Germany Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité Universitätsmedizin Berlin Berlin Germany Fraunhofer MEVIS Max-von-Laue-Str. 2 Bremen Germany Department VI Computer Science and Media Beuth University of Applied Sciences Berlin Germany Johanna-Etienne-Hospital Neuss Germany Centre for Stroke Research Berlin Charité Universitätsmedizin Berlin Berlin Germany Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany Mind Brain Body Institute Berlin School of Mind and Brain Humboldt University Berlin Berlin Germany Berlin Institute of Health Berlin Germany School of Computing and Digital Technology Faculty of Computing Engineering and the Built Environment Birmingham City University Birmingham United Kingdom QUEST-Center for Transforming Biomedical Research Berlin Institute of Health Charité Universitätsmedizin Berlin Charitéplatz 1 Berlin10117 Germany
Deep learning requires large lab.led datasets that are difficult to gather in medical imaging due to data privacy issues and time-consuming manual lab.ling. Generative Adversarial Networks (GANs) can alleviate these c... 详细信息
来源: 评论