咨询与建议

限定检索结果

文献类型

  • 105 篇 会议
  • 44 篇 期刊文献

馆藏范围

  • 149 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 120 篇 工学
    • 68 篇 计算机科学与技术...
    • 61 篇 软件工程
    • 34 篇 信息与通信工程
    • 23 篇 电子科学与技术(可...
    • 21 篇 控制科学与工程
    • 18 篇 生物医学工程(可授...
    • 17 篇 光学工程
    • 16 篇 机械工程
    • 15 篇 电气工程
    • 14 篇 生物工程
    • 10 篇 仪器科学与技术
    • 10 篇 化学工程与技术
    • 8 篇 航空宇航科学与技...
    • 5 篇 力学(可授工学、理...
    • 5 篇 交通运输工程
    • 4 篇 建筑学
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
  • 85 篇 理学
    • 61 篇 数学
    • 34 篇 物理学
    • 15 篇 统计学(可授理学、...
    • 14 篇 生物学
    • 9 篇 化学
    • 6 篇 系统科学
  • 22 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
  • 10 篇 医学
    • 8 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
  • 2 篇 经济学
  • 2 篇 军事学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 7 篇 image segmentati...
  • 6 篇 image enhancemen...
  • 6 篇 feature extracti...
  • 5 篇 remote sensing
  • 4 篇 face recognition
  • 4 篇 pattern recognit...
  • 4 篇 correlation
  • 3 篇 image fusion
  • 3 篇 motion planning
  • 3 篇 image
  • 3 篇 face
  • 3 篇 image processing
  • 3 篇 synthetic apertu...
  • 3 篇 transforms
  • 2 篇 complex networks
  • 2 篇 speckle
  • 2 篇 support vector m...
  • 2 篇 magnetic resonan...
  • 2 篇 electroencephalo...
  • 2 篇 adaptive equaliz...

机构

  • 7 篇 key lab. of inte...
  • 4 篇 institute of ima...
  • 4 篇 image analysis l...
  • 3 篇 intelligent reco...
  • 3 篇 moscow state uni...
  • 3 篇 college of life ...
  • 3 篇 guangxi colleges...
  • 3 篇 key lab. for ima...
  • 3 篇 control and inte...
  • 3 篇 shanghai jiao to...
  • 3 篇 guangxi colleges...
  • 3 篇 image analysis l...
  • 3 篇 school of cognit...
  • 3 篇 don state techni...
  • 3 篇 control and inte...
  • 3 篇 party committee ...
  • 3 篇 school of inform...
  • 3 篇 institute for pa...
  • 3 篇 artificial intel...
  • 2 篇 neuromagnetism l...

作者

  • 8 篇 jiao licheng
  • 7 篇 soltanian-zadeh ...
  • 7 篇 yunhong wang
  • 5 篇 ding mingyue
  • 5 篇 liu jian
  • 4 篇 cai chao
  • 4 篇 zelensky a.
  • 4 篇 tian jinwen
  • 4 篇 voronin v.
  • 3 篇 zhaoxiang zhang
  • 3 篇 jung keechul
  • 3 篇 han junghyun
  • 3 篇 jahanian hesamod...
  • 3 篇 sos agaian
  • 3 篇 zhang xiaohua
  • 3 篇 yang yang
  • 3 篇 hong liu
  • 3 篇 hamid soltanian-...
  • 3 篇 zhan-jiang ji
  • 3 篇 agaian s.

语言

  • 142 篇 英文
  • 4 篇 中文
  • 2 篇 日文
  • 1 篇 其他
检索条件"机构=Lab. of Intelligent Recognition and Image Processing"
149 条 记 录,以下是31-40 订阅
排序:
Unsupervised Local Discrimination for Medical images
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Huai Wang, Renzhen Wang, Xiuying Li, Jieyu Fang, Qu Li, Hui Bai, Jianhao Peng, Qing Meng, Deyu Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an710049 China The School of Computer Science The University of Sydney SydneyNSW2006 Australia Department of Ophthalmology Shanghai Tenth People’s Hospital Tongji University Shanghai200240 China The Cooperative Medianet Innovation Center Shanghai Jiao Tong University Shanghai200240 China The Changchun GeneScience Pharmaceutical Co. LTD China
Contrastive learning, which aims to capture general representation from unlab.led images to initialize the medical analysis models, has been proven effective in alleviating the high demand for expensive annotations. C... 详细信息
来源: 评论
Feedback alfa-rooting algorithm for medical image enhancement  17
Feedback alfa-rooting algorithm for medical image enhancemen...
收藏 引用
17th image processing: Algorithms and Systems Conference, IPAS 2019
作者: Voronin, V. Zelensky, A. Agaian, S. Don State Technical University Lab. «Mathematical Methods of Image Processing and Computer Vision Intelligent Systems» Gagarina 1 Rostov on Don Russia Moscow State University of Technology "STANKIN" Moscow Russia CUNY/ College of Staten Island Dept. of Computer Science New York United States
This paper presents a new combined local and global transform domain-based feedback image enhancement algorithm for medical diagnosis, treatment, and clinical research. The basic idea in using local alfa-rooting metho... 详细信息
来源: 评论
The quaternion-based anisotropic gradient for the color images  17
The quaternion-based anisotropic gradient for the color imag...
收藏 引用
17th image processing: Algorithms and Systems Conference, IPAS 2019
作者: Voronin, V. Zelensky, A. Agaian, S. Don State Technical University Lab. «Mathematical Methods of Image Processing and Computer Vision Intelligent Systems» Gagarina 1 Rostov on Don Russia Moscow State University of Technology"STANKIN" Moscow Russia CUNY College of Staten Island Dept. of Computer Science New York United States
image gradient, as a preprocessing step is an essential tool in image processing in many research areas such as edge detection, segmentation, smoothing, inpainting, etc. In the present paper, we develop a new gradient... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
DONet: Dual-octave network for fast MR image reconstruction
arXiv
收藏 引用
arXiv 2021年
作者: Feng, Chun-Mei Yang, Zhanyuan Fu, Huazhu Xu, Yong Yang, Jian Shao, Ling Shenzhen Key Laboratory of Visual Object Detection and Recognition Harbin Institute of Technology Shenzhen518055 China School of Automation Engineering University of Electronic Science and Technology of China 611731 China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates PCA Laboratory Key Lab. of Intelligent Percept. and Syst. for High-Dimensional Information of Ministry of Education Nanjiang University of Science and Technology Nanjiang210094 China Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China
Magnetic resonance (MR) image acquisition is an inherently prolonged process, whose acceleration has long been the subject of research. This is commonly achieved by obtaining multiple undersampled images, simultaneous... 详细信息
来源: 评论
Improvement of the Human Action recognition Algorithm by the Pre-processing of Input Data
收藏 引用
IOP Conference Series: Materials Science and Engineering 2021年 第1期1029卷
作者: M M Zhdanova O S Balab.eva V V Voronin E A Semenishchev A A Zelensky Center for Cognitive Technology and Machine Vision Moscow State University of Technology «STANKIN» Moscow Russia Lab. «Mathematical methods of image processing and intelligent computer vision systems» Don State Technical University Rostov-on-Don Russia
The paper presents an approach to recognizing human actions using an additional preprocessing stage of input data. The growing volumes of video information do not always allow support the quality of data at a high lev...
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, lab.led datasets ... 详细信息
来源: 评论
PILAE: A non-gradient descent learning scheme for deep feedforward neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Guo, Ping Wang, Ke Zhou, XiuLing The Image Processing & Pattern Recognition Lab. School of Systems Science Beijing Normal University Beijing100875 China The School of Information Engineering Zhengzhou University Zhengzhou450001 China The Department of Technology and Industry Development Beijing City University Beijing100083 China
In this work, a non-gradient descent learning (NGDL) scheme was proposed for deep feedforward neural networks (DNN). It is known that an autoencoder can be used as the building blocks of the multi-layer perceptron (ML... 详细信息
来源: 评论
Thermal image Enhancement Algorithm Using Local And Global Logarithmic Transform Histogram Matching With Spatial Equalization
Thermal Image Enhancement Algorithm Using Local And Global L...
收藏 引用
IEEE Southwest Symposium on image Analysis and Interpretation
作者: Viacheslav Voronin Svetlana Tokareva Evgenii Semenishchev Sos Agaian Lab. "Mathematical methods of image processing and intelligent computer vision systems" Don State Technical University Rostov-on-Don Russian Federation Dept. of Computer Science CUNY/The College of Staten Island Staten Island New York United States
This paper presents a new thermal image enhancement algorithm based on combined local and global image processing in the frequency domain. The presented approach uses the fact that the relationship between stimulus an... 详细信息
来源: 评论
A novel panoramic image stitching algorithm based on ORB
A novel panoramic image stitching algorithm based on ORB
收藏 引用
2017 IEEE International Conference on Applied System Innovation, ICASI 2017
作者: Wang, Maosen Niu, Shaozhang Yang, Xuan Beijing Key Lab of Intelligent Telecommunication Software and Multimedia Beijing University of Posts and Telecommunications Beijing100876 China Institute of Image Processing and Pattern Recognition North China University of Technology No.5 Jinyuanzhuang Road Shijingshan District Beijing China
image stitching technique is to integrate multiple images with overlapping regions into a complete image with a wide viewing angle, less distortion, and no obvious suture. image stitching could be used for global posi... 详细信息
来源: 评论