咨询与建议

限定检索结果

文献类型

  • 659 篇 会议
  • 207 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 868 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 644 篇 工学
    • 402 篇 计算机科学与技术...
    • 327 篇 软件工程
    • 262 篇 信息与通信工程
    • 117 篇 电子科学与技术(可...
    • 96 篇 电气工程
    • 91 篇 控制科学与工程
    • 61 篇 生物工程
    • 60 篇 仪器科学与技术
    • 55 篇 生物医学工程(可授...
    • 54 篇 机械工程
    • 53 篇 光学工程
    • 44 篇 化学工程与技术
    • 23 篇 网络空间安全
    • 16 篇 材料科学与工程(可...
    • 15 篇 土木工程
    • 13 篇 建筑学
  • 419 篇 理学
    • 253 篇 数学
    • 188 篇 物理学
    • 71 篇 统计学(可授理学、...
    • 68 篇 生物学
    • 44 篇 化学
    • 29 篇 系统科学
  • 141 篇 管理学
    • 77 篇 图书情报与档案管...
    • 67 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 38 篇 医学
    • 31 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 27 篇 法学
    • 24 篇 社会学
  • 18 篇 农学
    • 15 篇 作物学
  • 6 篇 经济学
  • 6 篇 文学
  • 5 篇 艺术学
  • 4 篇 军事学
  • 3 篇 教育学

主题

  • 20 篇 signal processin...
  • 19 篇 laboratories
  • 19 篇 feature extracti...
  • 19 篇 signal processin...
  • 17 篇 support vector m...
  • 14 篇 image segmentati...
  • 14 篇 semantics
  • 12 篇 training
  • 11 篇 vectors
  • 11 篇 image coding
  • 11 篇 synthetic apertu...
  • 11 篇 accuracy
  • 9 篇 digital filters
  • 9 篇 speech recogniti...
  • 9 篇 databases
  • 9 篇 machine learning
  • 9 篇 image compressio...
  • 9 篇 image reconstruc...
  • 8 篇 image enhancemen...
  • 8 篇 hidden markov mo...

机构

  • 24 篇 signal and infor...
  • 24 篇 key lab of intel...
  • 17 篇 national lab. of...
  • 14 篇 school of comput...
  • 13 篇 key lab. of inte...
  • 13 篇 signal processin...
  • 12 篇 signal process. ...
  • 11 篇 school of comput...
  • 11 篇 natural language...
  • 9 篇 peng cheng labor...
  • 8 篇 tianjin key lab ...
  • 8 篇 school of cyber ...
  • 8 篇 beijing key lab....
  • 8 篇 guangxi collabor...
  • 8 篇 key laboratory o...
  • 7 篇 lab. of acoustic...
  • 7 篇 key lab. of inte...
  • 6 篇 signal processin...
  • 6 篇 school of comput...
  • 6 篇 group of intelli...

作者

  • 19 篇 luo bin
  • 18 篇 zhou guodong
  • 12 篇 kong fang
  • 12 篇 zhu qiaoming
  • 11 篇 zhuo li
  • 11 篇 välimäki vesa
  • 10 篇 shen lan-sun
  • 10 篇 tang jin
  • 10 篇 bin luo
  • 9 篇 rajagopalan a.n.
  • 9 篇 huang qingming
  • 9 篇 li shoushan
  • 8 篇 li chenglong
  • 8 篇 li peifeng
  • 8 篇 xu qianqian
  • 7 篇 liao gui-sheng
  • 7 篇 kim chang-su
  • 7 篇 lee sang-uk
  • 7 篇 chunhe xia
  • 7 篇 tianbo wang

语言

  • 823 篇 英文
  • 38 篇 中文
  • 9 篇 其他
检索条件"机构=Lab. of Signal Processing and Computer Technology"
868 条 记 录,以下是1-10 订阅
排序:
DMFVAE:miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder
收藏 引用
Frontiers of computer Science 2024年 第6期18卷 259-270页
作者: Pijing WEI Qianqian WANG Zhen GAO Ruifen CAO Chunhou ZHENG Information Materials and Intelligent Sensing Laboratory of Anhui Province Institutes of Physical Science and Information TechnologyAnhui UniversityHefei 230601China Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and TechnologyAnhui UniversityHefei 230601China Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial IntelligenceAnhui UniversityHefei 230601China
MicroRNAs(miRNAs)are closely related to numerous complex human diseases,therefore,exploring miRNA-disease associations(MDAs)can help people gain a better understanding of complex disease *** increasing number of compu... 详细信息
来源: 评论
Indoor Accidents Detection for Elderly Based on Features Fusion and LSTM  21
Indoor Accidents Detection for Elderly Based on Features Fus...
收藏 引用
21st IEEE International Conference on computer Applications, ICCA 2024
作者: San, Win Pa Pa Zaw, Sai Maung Maung University of Computer Studies Mandalay Image and Signal Processing Lab Mandalay Myanmar University of Computer Studies Mandalay Faculty of Computer Systems and Technology Mandalay Myanmar
Nowadays, with aging of the human society, the 'ratio of family care givers and elderly' is not equivalent and cannot give enough caring to the elderly in some countries. Therefore, automatic health monitoring... 详细信息
来源: 评论
Supervised Relation Extraction Based on lab.ls Contrastive Learning  16
Supervised Relation Extraction Based on Labels Contrastive L...
收藏 引用
16th International Congress on Image and signal processing, BioMedical Engineering and Informatics, CISP-BMEI 2023
作者: Wang, Yuanru Zhao, Yanhui Cui, Rong-Yi Jin, Guo-Zhe Yanbian University Intelligent Information Processing Lab. Department of Computer Science & Technology Yanji China
Relation extraction is an important task in natural language processing. Existing relation extraction tasks usually use data augmentation to construct positive and negative samples for contrastive learning training. A... 详细信息
来源: 评论
Effect of Pectoral Muscles on CNN based Mammographic Cancer Detection  18
Effect of Pectoral Muscles on CNN based Mammographic Cancer ...
收藏 引用
18th INDIAcom;11th International Conference on Computing for Sustainable Global Development, INDIACom 2024
作者: Dhimann, Santoresh Kumari Sawhney, Tinny Yadav, Rakesh Kumar Maharishi University of Information Technology Department of Computer Science and Engineering Lucknow India University of Jammu Digital Signal Processing Lab Department of Electronics Jammu India
Cancer is attributed to abnormal growth of tissue cells in any part of the living body. The number of cancer patients is increasing worldwide. The reason of the development of abnormal cells within the body is still u... 详细信息
来源: 评论
Echo Simulation and Application of Multi-Channel Interferometric SAR Based on OptiX
Echo Simulation and Application of Multi-Channel Interferome...
收藏 引用
2024 Conference on Spectral technology and Applications, CSTA 2024
作者: Wu, Jiajun Liu, Peng Zhang, Qi Bai, Zhenhao Li, Zhenfang Zhou, Yashi Ma, Jian National Lab. of Radar Signal Processing Xidian University Xi'an710071 China Institute of Remote Sensing Satellite China Academy of Space Technology Beijing100098 China
Azimuth multi-channel interferometric synthetic aperture radar (SAR) achieves imaging and DEM product generation while simultaneously ensuring high resolution and wide observation swath. To achieve rapid and precise e... 详细信息
来源: 评论
J oint Optimization of Digital Beamforming and RF Interference Cancellation for SBFD
J oint Optimization of Digital Beamforming and RF Interferen...
收藏 引用
2023 IEEE Globecom Workshops, GC Wkshps 2023
作者: Hu, Nan Li, Yan Long, Hang Liu, Congxi Ke, Ting Wang, Fei Institute of Wireless and Terminal Technology China Mobile Research Institute Beijing China Wireless Signal Processing and Network Lab. Beijing China
Subband non-overlapping full duplex (SBFD) re-cently has been proposed to enhance uplink coverage and reduce latency of conventional time division duplex (TDD) systems by allocating frequency non-overlapping uplink (U... 详细信息
来源: 评论
Improving Transferability Reversible Adversarial Examples Based on Flipping Transformation  9th
Improving Transferability Reversible Adversarial Examples Ba...
收藏 引用
9th International Conference of Pioneering computer Scientists, Engineers and Educators, ICPCSEE 2023
作者: Fang, Youqing Jia, Jingwen Yang, Yuhai Lyu, Wanli Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei230601 China
Adding subtle perturbations to an image can cause the classification model to misclassify, and such images are called adversarial examples. Adversarial examples threaten the safe use of deep neural networks, but when ... 详细信息
来源: 评论
Adversarial Example Generation Method Based on Probability Histogram Equalization  42
Adversarial Example Generation Method Based on Probability H...
收藏 引用
42nd Chinese Control Conference, CCC 2023
作者: Fang, Youqing Jia, Jingwen Yang, Yuhai Lyu, Wan-Li School of Computer Science and Technology Key Lab of Intelligent Computing and Signal Processing of Ministry of Education Anhui University Hefei230601 China
CNNs (Convolutional Neural Networks) have a good performance on most classification tasks, but they are vulnerable when meeting adversarial examples. Research and design of highly aggressive adversarial examples can h... 详细信息
来源: 评论
Machine Learning Approaches for Automated Detection and Classification of Dysarthria Severity  2
Machine Learning Approaches for Automated Detection and Clas...
收藏 引用
2nd International Conference on Electronics, Energy and Measurement, IC2EM 2023
作者: Hamza, Amina Addou, Djamel Kheddar, Hamza University of Sciences and Technology Houari Boumediene Speech and Signal Processing Lab Algiers Algeria University of Medea Lsea Lab. Faculty of Technology Dept. Electrical Engineering Medea Algeria
Dysarthria, a speech disorder caused by neuro-motor problems resulting in impaired articulation, requires an assessment of its severity for diagnostic and monitoring purposes. Additionally, accurate severity classific... 详细信息
来源: 评论
ϵ-π: A Nonparametric Model for Neural Power Spectra Decomposition
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2024年 第5期28卷 2624-2635页
作者: Hu, Shiang Zhang, Zhihao Zhang, Xiaochu Wu, Xiaopei Valdes-Sosa, Pedro A. Anhui University Anhui Provincial Key Lab of Multimodal Cognitive Computation Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Hefei230601 China University of Science and Technology of China School of Humanities and Social Science Department of Psychology Hefei230026 China University of Electronic Science and Technology of China MOE Key Lab for Neuroinformation School of Life Science and Technology Chengdu611731 China
The power spectra estimated from the brain recordings are the mixed representation of aperiodic transient activity and periodic oscillations, i.e., aperiodic component (AC) and periodic component (PC). Quantitative ne... 详细信息
来源: 评论