咨询与建议

限定检索结果

文献类型

  • 299 篇 期刊文献
  • 248 篇 会议

馆藏范围

  • 547 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 379 篇 工学
    • 298 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 72 篇 信息与通信工程
    • 50 篇 生物工程
    • 46 篇 控制科学与工程
    • 43 篇 光学工程
    • 40 篇 电气工程
    • 34 篇 生物医学工程(可授...
    • 30 篇 电子科学与技术(可...
    • 27 篇 机械工程
    • 23 篇 化学工程与技术
    • 14 篇 土木工程
    • 13 篇 建筑学
    • 13 篇 交通运输工程
    • 12 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 网络空间安全
    • 8 篇 仪器科学与技术
  • 208 篇 理学
    • 98 篇 数学
    • 67 篇 物理学
    • 58 篇 生物学
    • 37 篇 统计学(可授理学、...
    • 25 篇 化学
    • 15 篇 系统科学
  • 102 篇 管理学
    • 53 篇 管理科学与工程(可...
    • 47 篇 图书情报与档案管...
    • 15 篇 工商管理
  • 27 篇 医学
    • 24 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
  • 8 篇 法学
  • 7 篇 经济学
  • 5 篇 农学
  • 4 篇 教育学

主题

  • 21 篇 semantics
  • 18 篇 training
  • 16 篇 deep learning
  • 15 篇 feature extracti...
  • 14 篇 neural networks
  • 12 篇 contrastive lear...
  • 10 篇 computational mo...
  • 10 篇 computer vision
  • 9 篇 conferences
  • 9 篇 object detection
  • 9 篇 task analysis
  • 8 篇 semantic segment...
  • 8 篇 benchmark testin...
  • 8 篇 machine learning
  • 8 篇 forecasting
  • 7 篇 data models
  • 6 篇 deep neural netw...
  • 6 篇 transformers
  • 6 篇 signal processin...
  • 6 篇 speech processin...

机构

  • 191 篇 school of comput...
  • 156 篇 key laboratory o...
  • 54 篇 guangdong provin...
  • 40 篇 peng cheng labor...
  • 35 篇 laboratory for a...
  • 19 篇 key laboratory o...
  • 19 篇 college of intel...
  • 17 篇 the school of co...
  • 16 篇 guangdong key la...
  • 13 篇 sun yat-sen univ...
  • 12 篇 pazhou lab
  • 12 篇 guangdong key la...
  • 12 篇 tianjin key labo...
  • 11 篇 japan advanced i...
  • 11 篇 tianjin key labo...
  • 10 篇 institute of art...
  • 10 篇 ministry of educ...
  • 9 篇 school of comput...
  • 9 篇 guangdong key la...
  • 9 篇 department of el...

作者

  • 85 篇 zheng wei-shi
  • 31 篇 xie xiaohua
  • 29 篇 wei-shi zheng
  • 23 篇 lai jianhuang
  • 20 篇 lai jian-huang
  • 19 篇 wang ruixuan
  • 16 篇 wang chang-dong
  • 16 篇 yang lingxiao
  • 13 篇 wu xiao-ming
  • 12 篇 lin kun-yu
  • 12 篇 yunong zhang
  • 12 篇 wu ancong
  • 11 篇 lu wei
  • 10 篇 yan junkai
  • 9 篇 meng jingke
  • 9 篇 jianhuang lai
  • 9 篇 wei yi-lin
  • 9 篇 hu jian-fang
  • 8 篇 dang jianwu
  • 8 篇 ma andy j.

语言

  • 501 篇 英文
  • 46 篇 其他
  • 3 篇 中文
检索条件"机构=Laboratory for Advanced Computing and Intelligence Engineering"
547 条 记 录,以下是21-30 订阅
排序:
Bridging the Gap using Contrastive Learning and Semantic Consistency for Unsupervised Neural Machine Translation  5
Bridging the Gap using Contrastive Learning and Semantic Con...
收藏 引用
5th International Conference on Artificial intelligence and Computer engineering, ICAICE 2024
作者: Zhang, Chuancai Qu, Dan Du, Liming Yang, Kaiyuan School of Information Systems Engineering University of Information Engineering Zhengzhou China Laboratory for Advanced Computing and Intelligence Engineering Zhengzhou China School of Cyberspace Security Zhengzhou University Zhengzhou China
In Unsupervised Neural Machine Translation (UNMT) tasks, the lack of extensive parallel corpora makes it challenging for the model to directly optimize the correspondence between the source and target languages. UNMT ... 详细信息
来源: 评论
Software Diversification Protection Methods for Binary Programs
Software Diversification Protection Methods for Binary Progr...
收藏 引用
6th International Conference on Intelligent computing and Signal Processing (ICSP)
作者: Yingchao Chen Junchao Wang Xin Zhou Jianmin Pang Laboratory for Advanced Computing and Intelligence Engineering Zhengzhou China
Software diversification is an effective software protection method against reverse engineering and code reuse attacks, which can provide heterogeneous redundant execution bodies for mimetic defense mechanisms. Most e... 详细信息
来源: 评论
Continual learning with Bayesian model based on a fixed pre-trained feature extractor
收藏 引用
Visual intelligence 2023年 第1期1卷 1-14页
作者: Yang, Yang Cui, Zhiying Xu, Junjie Zhong, Changhong Zheng, Wei-Shi Wang, Ruixuan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Department of Network Intelligence Peng Cheng Laboratory Shenzhen China Key Laboratory of Machine Intelligence and Advanced Computing MOE Guangzhou China
Deep learning has shown its human-level performance in various applications. However, current deep learning models are characterized by catastrophic forgetting of old knowledge when learning new classes. This poses a ... 详细信息
来源: 评论
TexCIL: Text-Guided Continual Learning of Disease with Vision-Language Model
TexCIL: Text-Guided Continual Learning of Disease with Visio...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Zhang, Wentao Zhao, Defeng Zheng, Wei-Shi Wang, Ruixuan Sun Yat-sen University School of Computer Science and Engineering Guangzhou China Peng Cheng Laboratory Shenzhen China Moe Key Laboratory of Machine Intelligence and Advanced Computing Guangzhou China
Current intelligent diagnostic systems often catastrophically forget old knowledge when learning new diseases only from the training dataset of the new diseases. Inspired by human learning of visual classes with the e... 详细信息
来源: 评论
Path test data generation using adaptive simulated annealing particle swarm optimization
收藏 引用
Soft computing 2024年 第17-18期28卷 9587-9607页
作者: Jiao, Chongyang Zhou, Qinglei State Key Laboratory of Mathematical Engineering and Advanced Computing PLA Strategic Support Force Information Engineering University Zhengzhou450001 China Henan Information Engineering School Zhengzhou Vocational College of Industrial Safety Zhengzhou450000 China School of Computer and Artificial Intelligence Zhengzhou University Zhengzhou450001 China
Software testing is an effective means of ensuring software quality. The cost of software testing is the main component of the total cost of software development. The generation of test data is very important in testi... 详细信息
来源: 评论
EB-SNN: An Ensemble Binary Spiking Neural Network for Visual Recognition  27th
EB-SNN: An Ensemble Binary Spiking Neural Network for Visua...
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Li, Xinjie Tang, Jianxiong Lai, Jianhuang School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangzhou510555 China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou China
In recent years, spiking neural networks (SNNs) have gained significant attention in visual recognition tasks due to the low computational energy. However, most SNNs have a large number of parameters, which limits the... 详细信息
来源: 评论
Breaking Information Silos: Global Guided Task Prediction for Class-Incremental Learning  27th
Breaking Information Silos: Global Guided Task Prediction fo...
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Hu, Chaoshun Ye, Biaohua Chen, Zixuan Lai, Jian-Huang School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangzhou510555 China Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing Guangzhou China
Class-incremental learning (CIL) aims to learn a series of tasks sequentially, each introducing several new categories. Because providing the task labels during inference can significantly increase accuracy, many appr... 详细信息
来源: 评论
Grasp as You Say: Language-guided Dexterous Grasp Generation  38
Grasp as You Say: Language-guided Dexterous Grasp Generation
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wei, Yi-Lin Jiang, Jian-Jian Xing, Chengyi Tan, Xian-Tuo Wu, Xiao-Ming Li, Hao Cutkosky, Mark Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-sen University China Stanford University United States Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
This paper explores a novel task "Dexterous Grasp as You Say" (DexGYS), enabling robots to perform dexterous grasping based on human commands expressed in natural language. However, the development of this f...
来源: 评论
Class-specific Prompts in Vision Transformer for Continual Learning of New Diseases
Class-specific Prompts in Vision Transformer for Continual L...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Zhao, Defeng Ye, Zejun Zheng, Wei-Shi Wang, Ruixuan Sun Yat-sen University School of Computer Science and Engineering Guangzhou China Peng Cheng Laboratory Department of Network Intelligence Shenzhen China Moe Key Laboratory of Machine Intelligence and Advanced Computing China
Current intelligent diagnosis systems are often trained to diagnose a small number of diseases and lack the ability of continually learning new disease knowledge. To have such continual learning ability, the deployed ... 详细信息
来源: 评论
Imputing DNA Methylation by Transferred Learning Based Neural Network
收藏 引用
Journal of Computer Science & Technology 2022年 第2期37卷 320-329页
作者: Xin-Feng Wang Xiang Zhou Jia-Hua Rao Zhu-Jin Zhang Yue-Dong Yang School of Computer Science and Engineering Sun Yat-sen UniversityGuangzhou 510000China Key Laboratory of Machine Intelligence and Advanced Computing of Ministry of Education(Sun Yat-sen University)Guangzhou 510000 China
DNA methylation is one important epigenetic type to play a vital role in many diseases including *** the development of the high-throughput sequencing technology,there is much progress to disclose the relations of DNA... 详细信息
来源: 评论