咨询与建议

限定检索结果

文献类型

  • 102 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 117 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 74 篇 工学
    • 36 篇 光学工程
    • 33 篇 生物医学工程(可授...
    • 30 篇 计算机科学与技术...
    • 29 篇 软件工程
    • 20 篇 生物工程
    • 18 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 9 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 化学工程与技术
    • 3 篇 核科学与技术
    • 2 篇 机械工程
  • 64 篇 理学
    • 29 篇 生物学
    • 25 篇 物理学
    • 14 篇 数学
    • 6 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 地球物理学
    • 1 篇 天文学
  • 41 篇 医学
    • 37 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 21 篇 管理学
    • 12 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 8 篇 农学
    • 2 篇 作物学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 9 篇 magnetic resonan...
  • 5 篇 diffusion tensor...
  • 5 篇 image segmentati...
  • 4 篇 image reconstruc...
  • 3 篇 image analysis
  • 3 篇 tumors
  • 3 篇 shape
  • 2 篇 cancer
  • 2 篇 deep learning
  • 2 篇 generative adver...
  • 2 篇 anomaly detectio...
  • 2 篇 magnetic resonan...
  • 2 篇 optical tomograp...
  • 2 篇 cardiology
  • 2 篇 benchmarking
  • 2 篇 biomedical imagi...
  • 2 篇 clustering algor...
  • 2 篇 radiotherapy
  • 1 篇 symbiosis
  • 1 篇 complex networks

机构

  • 9 篇 department of in...
  • 8 篇 university of pe...
  • 7 篇 department of me...
  • 7 篇 wellcome centre ...
  • 6 篇 institute for ca...
  • 6 篇 royal stoke univ...
  • 6 篇 department of tw...
  • 6 篇 lab crestview ra...
  • 6 篇 human genetics c...
  • 6 篇 department of bi...
  • 6 篇 department of me...
  • 6 篇 department of ra...
  • 6 篇 mcgill universit...
  • 6 篇 heidelberg
  • 5 篇 sage bionetworks...
  • 5 篇 atherogenomics l...
  • 5 篇 national institu...
  • 5 篇 broad genomics b...
  • 5 篇 framingham heart...
  • 5 篇 division of card...

作者

  • 13 篇 bakas spyridon
  • 11 篇 kofler florian
  • 11 篇 menze bjoern
  • 10 篇 langs georg
  • 7 篇 li hongwei bran
  • 7 篇 linguraru marius...
  • 7 篇 calabrese evan
  • 6 篇 ezhov ivan
  • 6 篇 wang chunhao
  • 6 篇 kazerooni anahit...
  • 6 篇 chung verena
  • 6 篇 müller henning
  • 6 篇 moawad ahmed w.
  • 6 篇 schmidt-erfurth ...
  • 5 篇 kozubek michal
  • 5 篇 galdran adrian
  • 5 篇 macarthur daniel...
  • 5 篇 reinke annika
  • 5 篇 meier zeke
  • 5 篇 glocker ben

语言

  • 112 篇 英文
  • 5 篇 其他
检索条件"机构=Laboratory for Computational Medical Imaging and Data Analysis"
117 条 记 录,以下是1-10 订阅
排序:
Patch Triplet Similarity Purification for Guided Real-World Low-Dose CT Image Denoising
arXiv
收藏 引用
arXiv 2025年
作者: Long, Junhao Yang, Fengwei Yan, Juncheng Zhang, Baoping Jin, Chao Yang, Jian Zou, Changliang Xu, Jun School of Statistics and Data Science Nankai University Tianjin300071 China Department of Radiology The First Affiliated Hospital of Xi’an Jiaotong University Xi’an China Shanxi Engineering Research Center of Computational Imaging and Medical Intelligence Xi’an China Xi’an Key Laboratory of Medical Computational Imaging Xi’an China
Image denoising of low-dose computed tomography (LDCT) is an important problem for clinical diagnosis with reduced radiation exposure. Previous methods are mostly trained with pairs of synthetic or misaligned LDCT and... 详细信息
来源: 评论
Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multimodal data
收藏 引用
Signal Transduction and Targeted Therapy 2024年 第9期9卷 4137-4148页
作者: Zifan Chen Yang Chen Yu Sun Lei Tang Li Zhang Yajie Hu Meng He Zhiwei Li Siyuan Cheng Jiajia Yuan Zhenghang Wang Yakun Wang Jie Zhao Jifang Gong Liying Zhao Baoshan Cao Guoxin Li Xiaotian Zhang Bin Dong Lin Shen Center for Data Science Peking UniversityBeijingChina Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Pathology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina National Biomedical Imaging Center Peking UniversityBeijingChina Department of General Surgery Nanfang HospitalSouthern Medical UniversityGuangzhouChina Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor GuangzhouChina Department of Medical Oncology and Radiation Sickness Peking University Third HospitalBeijingChina National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijingChina Beijing International Center for Mathematical Research(BICMR) Peking UniversityBeijingChina Center for Machine Learning Research Peking UniversityBeijingChina
The sole use of single modality data often fails to capture the complex heterogeneity among patients,including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens,for the tre... 详细信息
来源: 评论
Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting
Longitudinal Segmentation of MS Lesions via Temporal Diffe...
收藏 引用
Workshop on Longitudinal Disease Tracking and Modeling with medical Images and data, LDTM 2024, 5th International Workshop on Multiscale Multimodal medical imaging, MMMI 2024, 1st Workshop on Machine Learning for Multimodal/-sensor Healthcare data, ML4MHD2024 and Workshop on Multimodal Learning and Fusion Across Scales for Clinical Decision Support, ML-CDS 2024 held in conjunction with the 27th International Conference on medical Image Computing and Computer Assisted Intervention, MICCAI 2024
作者: Rokuss, Maximilian R. Kirchhoff, Yannick Roy, Saikat Kovacs, Balint Ulrich, Constantin Wald, Tassilo Zenk, Maximilian Denner, Stefan Isensee, Fabian Vollmuth, Philipp Kleesiek, Jens Maier-Hein, Klaus Division of Medical Image Computing Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Karlsruhe Heidelberg Germany Medical Faculty Heidelberg Heidelberg University Heidelberg Germany Helmholtz Imaging German Cancer Research Center Heidelberg Germany Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany Division for Computational Neuroimaging Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany University Hospital Essen Essen Germany University Hospital Essen West German Cancer Center Essen Essen Germany Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Heidelberg Germany
Accurate segmentation of Multiple Sclerosis (MS) lesions in longitudinal MRI scans is crucial for monitoring disease progression and treatment efficacy. Although changes across time are taken into account when assessi... 详细信息
来源: 评论
Spatio-temporal motion correction and iterative reconstruction of in-utero fetal fMRI
arXiv
收藏 引用
arXiv 2022年
作者: Taymourtash, Athena Kebiri, Hamza Schwartz, Ernst Nenning, Karl-Heinz Tourbier, Sébastien Kasprian, Gregor Prayer, Daniela Cuadra, Meritxell Bach Langs, Georg Computational Imaging Research Lab Department of Biomedical Imaging and Image-Guided Therapy Medical University of Vienna Austria Medical Image Analysis Laboratory Department of Radiology Lausanne University Hospital University of Lausanne Switzerland CIBM Center for Biomedical Imaging Switzerland Center for Biomedical Imaging and Neuromodulation Nathan Kline Institute OrangeburgNY United States Division of Neuroradiology and Muskulo-Skeletal Radiology Department of Biomedical Imaging and Image-Guided Therapy Medical University of Vienna Austria
Resting-state functional Magnetic Resonance imaging (fMRI) is a powerful imaging technique for studying functional development of the brain in utero. However, unpredictable and excessive movement of fetuses have limit... 详细信息
来源: 评论
Deep learning-based large-scale named entity recognition for anatomical region of mammalian brain
收藏 引用
Quantitative Biology 2022年 第3期10卷 253-263页
作者: Xiaokang Chai Yachao Di Zhao Feng Yue Guan Guoqing Zhang Anan Li Qingming Luo Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for OptoelectronicsMoE Key Laboratory for Biomedical PhotonicsHuazhong University of Science and TechnologyWuhan 430074China Key Laboratory of Biomedical Engineering of Hainan Province School of Biomedical EngineeringHainan UniversityHaikou 570228China CAS Key Laboratory of Computational Biology Bio-Med Big Data CenterShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesShanghai 200031China Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging Chinese Academy of Medical SciencesHUST-Suzhou Institute for BrainsmaticsJITRISuzhou 215123China CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of SciencesShanghai 200031China
Background:Images of anatomical regions and neuron type distribution,as well as their related literature are valuable assets for neuroscience *** are vital evidence and vehicles in discovering new phenomena and knowle... 详细信息
来源: 评论
Simultaneous q-Space Sampling Optimization and Reconstruction for Fast and High-fidelity Diffusion Magnetic Resonance imaging
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Jing Cheng, Jian Li, Cheng Fan, Wenxin Zou, Juan Wu, Ruoyou Wang, Shanshan Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China University of Chinese Academy of Sciences Beijing China State Key Laboratory of Software Development Environment Beihang University Beijing China Peng Cheng Laboratory Guangdong Shenzhen China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangdong China Key Laboratory of Data Science and Intelligent Computing Institute of International Innovation Beihang University Yuhang District Hangzhou China
Diffusion Magnetic Resonance imaging (dMRI) plays a crucial role in the noninvasive investigation of tissue microstructural properties and structural connectivity in the in vivo human brain. However, to effectively ca... 详细信息
来源: 评论
Large language models illuminate a progressive pathway to artificial intelligent healthcare assistant
Medicine Plus
收藏 引用
Medicine Plus 2024年 第2期1卷 102-124页
作者: Mingze Yuan Peng Bao Jiajia Yuan Yunhao Shen Zifan Chen Yi Xie Jie Zhao Quanzheng Li Yang Chen Li Zhang Lin Shen Bin Dong Center for Data Science Peking UniversityBeijing 100871China Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and Institute Beijing 100142China National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijing 100871China Beijing International Center for Mathematical Research Peking UniversityBeijing 100871China Center for Machine Learning Research Peking University Beijing 100871China National Biomedical Imaging Center Peking UniversityBeijing 100871China Peking University Changsha Institute for Computing and Digital Economy Changsha 410205China Massachusetts General Hospital Boston MA 02114-2696USA Harvard Medical School BostonMA 02115USA
With the rapid development of artificial intelligence,large language models(LLMs)have shown promising capabilities in mimicking human-level language comprehen-sion and *** has sparked significant interest in applying ... 详细信息
来源: 评论
BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale Weakly Supervised Applications
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Jiatai Han, Guoqiang Xu, Xuemiao Liang, Changhong Wong, Tien-Tsin Chen, C.L. Philip Liu, Zaiyi Han, Chu The School of Computer Science and Engineering South China University of Technology Guangdong Guangzhou510006 China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangzhou510080 China Southern Medical University Guangzhou510080 China School of Computer Science and Engineering South China University of Technology State Key Laboratory of Subtropical Building Science Ministry of Education Key Laboratory of Big Data and Intelligent Robot Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong
Class activation mapping (CAM), a visualization technique for interpreting deep learning models, is now commonly used for weakly supervised semantic segmentation (WSSS) and object localization (WSOL). It is the weight... 详细信息
来源: 评论
Neural mechanisms of top-down divided and selective spatial attention in visual and auditory perception
收藏 引用
Brain Science Advances 2023年 第2期9卷 95-113页
作者: Zhongtian Guan Meng Lin Qiong Wu Jinglong Wu Kewei Chen Hongbin Han Dehua Chui Xu Zhang Chunlin Li School of Biomedical Engineering Capital Medical UniversityBeijing 100069China Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical UniversityBeijing 100069China Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application Capital Medical UniversityBeijing 100069China Peking University First Hospital Beijing 100034China Biomedical Engineering Laboratory Graduate School of Natural Science and TechnologyOkayama University3-1-1 Tsushima-nakaOkayamaJapan Key Laboratory of Biomimetic Robots and Systems Ministry of EducationBeijing Institute of TechnologyBeijing 100081China Computational Image Analysis Banner Alzheimer’s Institute and Banner Good Samaritan Medical CentrePET CentrePhoenixAZ 85006USA Radiology Peking University Third HospitalBeijing 100191China Neuroscience Research Institute/Peking University Third Hospital Beijing 100191China
Top-down attention mechanisms require the selection of specificobjects or locations;however,the brain mechanism involved when attention is allocated across different modalities is not well *** aim of this study was to... 详细信息
来源: 评论
Explainable and Interpretable Diabetic Retinopathy Classification Based on Neural-Symbolic Learning
arXiv
收藏 引用
arXiv 2022年
作者: Jang, Se-In Girard, Michaël J.A. Thiery, Alexandre H. Gordon Center for Medical Imaging Massachusetts General Hospital Harvard Medical School Boston United States Center for Advanced Medical Computing and Analysis Massachusetts General Hospital Harvard Medical School BostonMA United States Ophthalmic Engineering and Innovation Laboratory Singapore Eye Research Institute Singapore Singapore Duke-NUS Medical School Singapore Singapore Institute for Molecular and Clinical Ophthalmology Basel Switzerland Department of Statistics and Data Science National University of Singapore Singapore Singapore
In this paper, we propose an explainable and interpretable diabetic retinopathy (ExplainDR) classification model based on neural-symbolic learning. To gain explainability, a highlevel symbolic representation should be... 详细信息
来源: 评论