咨询与建议

限定检索结果

文献类型

  • 133 篇 会议
  • 83 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 217 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 143 篇 工学
    • 118 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 27 篇 信息与通信工程
    • 15 篇 控制科学与工程
    • 15 篇 生物工程
    • 8 篇 机械工程
    • 7 篇 材料科学与工程(可...
    • 7 篇 电气工程
    • 6 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 5 篇 安全科学与工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 仪器科学与技术
  • 62 篇 理学
    • 26 篇 数学
    • 21 篇 物理学
    • 17 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 化学
    • 5 篇 天文学
  • 49 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 12 篇 教育学
    • 11 篇 教育学
    • 6 篇 心理学(可授教育学...
  • 9 篇 医学
    • 9 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 5 篇 文学
    • 5 篇 外国语言文学
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 11 篇 semantics
  • 10 篇 training
  • 9 篇 computational li...
  • 8 篇 deep learning
  • 7 篇 natural language...
  • 7 篇 neural networks
  • 7 篇 data mining
  • 6 篇 feature extracti...
  • 5 篇 computational mo...
  • 5 篇 predictive model...
  • 5 篇 machine learning
  • 5 篇 accuracy
  • 5 篇 china english
  • 4 篇 learning systems
  • 4 篇 deep neural netw...
  • 4 篇 hidden markov mo...
  • 4 篇 acoustics
  • 4 篇 scientific reaso...
  • 4 篇 entropy
  • 4 篇 federated learni...

机构

  • 53 篇 laboratory of la...
  • 24 篇 hunan provincial...
  • 20 篇 school of inform...
  • 10 篇 college of infor...
  • 8 篇 national enginee...
  • 7 篇 key laboratory o...
  • 7 篇 hunan provincial...
  • 6 篇 xianda college o...
  • 6 篇 laboratory for p...
  • 6 篇 hunan normal uni...
  • 6 篇 department of ph...
  • 6 篇 guangdong univer...
  • 6 篇 department of ap...
  • 5 篇 school of inform...
  • 5 篇 college of compu...
  • 5 篇 chair for psycho...
  • 5 篇 national enginee...
  • 5 篇 non-universal la...
  • 4 篇 xiangjiang labor...
  • 4 篇 laboratory for l...

作者

  • 12 篇 jiang feibo
  • 12 篇 dong li
  • 10 篇 xinguang li
  • 10 篇 wuying liu
  • 9 篇 li xinguang
  • 9 篇 wang kezhi
  • 9 篇 xia li
  • 9 篇 yang kun
  • 9 篇 pan cunhua
  • 9 篇 liu wuying
  • 7 篇 li xia
  • 7 篇 mcloughlin ian
  • 7 篇 dai jianhua
  • 7 篇 sancheng peng
  • 6 篇 maja planinic
  • 6 篇 marijan palmovic
  • 6 篇 lin wang
  • 6 篇 andreja bubic
  • 6 篇 ana susac
  • 5 篇 peng yubo

语言

  • 189 篇 英文
  • 24 篇 其他
  • 6 篇 中文
检索条件"机构=Laboratory for Language Engineering and Computing"
217 条 记 录,以下是91-100 订阅
排序:
A method of English-Chinese language recognition and its application in oral English learning system  20
A method of English-Chinese language recognition and its app...
收藏 引用
Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer engineering
作者: XinGuang Li Shuai Chen ZhiChao Zhou XiaoLan Long ZeMing Chen WeiYuan Wu Laboratory of Language Engineering and Computing Guangdong University of Foreign Studies Guangzhou China Guangdong University of Foreign Studies Guangzhou China South China University of Technology Guangzhou China
In this paper, Gammatone Frequency Cepstrum Coefficients (GFCC) and Shifted Delta Cepstra (SDC) hybrid model were used to extract the speech feature parameters, and Gaussian Mixture Model-Universal Background Model (G... 详细信息
来源: 评论
On Fixed-Order Book Thickness Parameterized by the Pathwidth of the Vertex Ordering  14th
On Fixed-Order Book Thickness Parameterized by the Pathwidth...
收藏 引用
14th International Conference on Algorithmic Aspects in Information and Management, AAIM 2020
作者: Liu, Yunlong Chen, Jie Huang, Jingui Wang, Jianxin Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha410081 China School of Computer Science and Engineering Central South University Changsha410083 China
Given a graph (Formula Presented) and a fixed linear order (Formula Presented) of V, the problem fixed-order book thickness asks whether there is a page assignment (Formula Presented) such that (Formula Presented) is ... 详细信息
来源: 评论
Online multi-label streaming feature selection by affinity significance, affinity relevance and affinity redundancy
收藏 引用
Pattern Recognition 2025年
作者: Jianhua Dai Duo Xu Chucai Zhang Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Hunan Normal University Changsha 410081 China Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education) School of Mathematics and Statistics Hunan Normal University Changsha 410081 China
Multi-label streaming feature selection has applied to various fields to deal with the applications that features arrive dynamically. However, most exist multi-label streaming feature selection methods ignore that a f...
来源: 评论
Bert-pair-networks for sentiment classification  19
Bert-pair-networks for sentiment classification
收藏 引用
19th International Conference on Machine Learning and Cybernetics, ICMLC 2020
作者: Wang, Ziwen Wu, Haiming Liu, H.A.N. Cai, Qian-Hua Guangdong University of Foreign Studies Laboratory of Language Engineering and Computing Guangzhou510006 China South China Normal University School of Physics and Telecommunication Engineering Guangzhou510006 China Shenzhen University College of Computer Science and Software Engineering Shenzhen518060 China
BERT has demonstrated excellent performance in natural language processing due to the training on large amounts of text corpus in an unsupervised way. However, this model is trained to predict the next sentence, and t... 详细信息
来源: 评论
Large Generative Model Assisted 3D Semantic Communication
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Feibo Peng, Yubo Dong, Li Wang, Kezhi Yang, Kun Pan, Cunhua You, Xiaohu Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China School of Information Science and Engineering Hunan Normal University Changsha China Changsha Social Laboratory of Artificial Intelligence Hunan University of Technology and Business Changsha China The Department of Computer Science Brunel University London United Kingdom The School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Changchun Institute of Technology China The National Mobile Communications Research Laboratory Southeast University Nanjing210096 China The Frontiers Science Center for Mobile Information Communication and Security National Mobile Communications Research Laboratory Southeast University Nanjing China The Purple Mountain Laboratories Nanjing China
Semantic Communication (SC) is a novel paradigm for data transmission in 6G. However, there are several challenges posed when performing SC in 3D scenarios: 1) 3D semantic extraction;2) Latent semantic redundancy;and ... 详细信息
来源: 评论
Effect of representation format on conceptual question performance and eye-tracking measures
收藏 引用
Physical Review Physics Education Research 2023年 第2期19卷 020114-020114页
作者: Ana Susac Maja Planinic Andreja Bubic Katarina Jelicic Marijan Palmovic Department of Applied Physics Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 10000 Zagreb Croatia Department of Physics Faculty of Science University of Zagreb Bijenicka 32 10000 Zagreb Croatia Department of Psychology Faculty of Humanities and Social Sciences University of Split Sinjska 2 21000 Split Croatia Laboratory for Psycholinguistic Research Department of Speech and Language Pathology University of Zagreb Borongajska cesta 83h 10000 Zagreb Croatia
Previous studies have shown the important role of different representations in the teaching and learning of physics. In this study, we used eye tracking to investigate the effect of different representations on the pr... 详细信息
来源: 评论
Large AI Model-Based Semantic Communications
arXiv
收藏 引用
arXiv 2023年
作者: Jiang, Feibo Peng, Yubo Dong, Li Wang, Kezhi Yang, Kun Pan, Cunhua You, Xiaohu Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China School of Information Science and Engineering Hunan Normal University Changsha China Changsha Social Laboratory of Artificial Intelligence Hunan University of Technology and Business Changsha China Department of Computer Science Brunel University London United Kingdom School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Changchun Institute of Technology China National Mobile Communications Research Laboratory Southeast University Nanjing210096 China
Semantic communication (SC) is an emerging intelligent paradigm, offering solutions for various future applications like metaverse, mixed reality, and the Internet of Everything. However, in current SC systems, the co... 详细信息
来源: 评论
Using multiple reference audios and style embedding constraints for speech synthesis
arXiv
收藏 引用
arXiv 2021年
作者: Gong, Cheng Wang, Longbiao Ling, Zhenhua Zhang, Ju Dang, Jianwu Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China Hefei China Co. Ltd Japan Advanced Institute of Science and Technology Ishikawa Japan
The end-to-end speech synthesis model can directly take an utterance as reference audio, and generate speech from the text with prosody and speaker characteristics similar to the reference audio. However, an appropria... 详细信息
来源: 评论
Kidding bot: A chatbot against harassing phone calls  9
Kidding bot: A chatbot against harassing phone calls
收藏 引用
2019 9th International Workshop on Computer Science and engineering, WCSE 2019
作者: Chen, Shihong Xu, Tianjiao Chen, Lu Laboratory of Language Engineering and Computing Guangdong University of Foreign Studies Guangzhou China School of Information Science and Technology Guangdong University of Foreign Studies Guangzhou China School of Business Guangdong University of Foreign Studies Guangzhou China
Nowadays, the majority of mobile phone users suffer from harassment calls. However, traditional way to intercept the harassment calls cannot reduce this annoying behavior. In this paper, we designed and developed Kidd... 详细信息
来源: 评论
Reachable Distance Function for KNN Classification
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Shichao Li, Jiaye Li, Yangding School of Computer Science and Engineering Central South University Changsha410083 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha410081 China
Distance function is a main metrics of measuring the affinity between two data points in machine learning. Extant distance functions often provide unreachable distance values in real applications. This can lead to inc... 详细信息
来源: 评论