咨询与建议

限定检索结果

文献类型

  • 133 篇 会议
  • 83 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 217 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 121 篇 计算机科学与技术...
    • 103 篇 软件工程
    • 27 篇 信息与通信工程
    • 17 篇 控制科学与工程
    • 15 篇 生物工程
    • 9 篇 机械工程
    • 8 篇 电气工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 5 篇 安全科学与工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 仪器科学与技术
  • 63 篇 理学
    • 27 篇 数学
    • 22 篇 物理学
    • 17 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 5 篇 化学
    • 4 篇 天文学
  • 49 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 11 篇 教育学
    • 10 篇 教育学
    • 5 篇 心理学(可授教育学...
  • 10 篇 医学
    • 10 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 5 篇 文学
    • 5 篇 外国语言文学
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 11 篇 semantics
  • 10 篇 training
  • 9 篇 computational li...
  • 8 篇 deep learning
  • 7 篇 natural language...
  • 7 篇 neural networks
  • 7 篇 data mining
  • 6 篇 feature extracti...
  • 5 篇 computational mo...
  • 5 篇 predictive model...
  • 5 篇 machine learning
  • 5 篇 accuracy
  • 5 篇 china english
  • 4 篇 learning systems
  • 4 篇 deep neural netw...
  • 4 篇 hidden markov mo...
  • 4 篇 acoustics
  • 4 篇 scientific reaso...
  • 4 篇 entropy
  • 4 篇 federated learni...

机构

  • 53 篇 laboratory of la...
  • 24 篇 hunan provincial...
  • 20 篇 school of inform...
  • 10 篇 college of infor...
  • 8 篇 national enginee...
  • 7 篇 key laboratory o...
  • 7 篇 hunan provincial...
  • 6 篇 xianda college o...
  • 6 篇 laboratory for p...
  • 6 篇 hunan normal uni...
  • 6 篇 department of ph...
  • 6 篇 guangdong univer...
  • 6 篇 department of ap...
  • 5 篇 school of inform...
  • 5 篇 college of compu...
  • 5 篇 chair for psycho...
  • 5 篇 national enginee...
  • 5 篇 non-universal la...
  • 4 篇 xiangjiang labor...
  • 4 篇 laboratory for l...

作者

  • 12 篇 jiang feibo
  • 12 篇 dong li
  • 10 篇 xinguang li
  • 10 篇 wuying liu
  • 9 篇 li xinguang
  • 9 篇 wang kezhi
  • 9 篇 xia li
  • 9 篇 yang kun
  • 9 篇 pan cunhua
  • 9 篇 liu wuying
  • 7 篇 li xia
  • 7 篇 mcloughlin ian
  • 7 篇 dai jianhua
  • 7 篇 sancheng peng
  • 6 篇 maja planinic
  • 6 篇 marijan palmovic
  • 6 篇 lin wang
  • 6 篇 andreja bubic
  • 6 篇 ana susac
  • 5 篇 peng yubo

语言

  • 182 篇 英文
  • 31 篇 其他
  • 6 篇 中文
检索条件"机构=Laboratory for Language Engineering and Computing"
217 条 记 录,以下是71-80 订阅
排序:
The Design and Construction of the Corpus of China English  3
The Design and Construction of the Corpus of China English
收藏 引用
3rd International Conference on Algorithms, computing and Artificial Intelligence, ACAI 2020
作者: Xia, Lixin Xia, Yun Laboratory of Language Engineering and Computing Guangdong University of Foreign Studies Nanfang College of Sun Yat-Sen University Guangdong University of Foreign Studies
The paper describes the design and construction of the Corpus of China English (CCE). With the emergence of China English as a developing variety in the family of the world Englishes, more and more research has been d... 详细信息
来源: 评论
GTK:A Hybrid-Search Algorithm of Top-Rank-k Frequent Patterns Based on Greedy Strategy
收藏 引用
Computers, Materials & Continua 2020年 第6期63卷 1445-1469页
作者: Yuhang Long Wensheng Tang Bo Yang Xinyu Wang Hua Ma Hang Shi Xueyu Cheng Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal UniversityChangsha410081China College of Information Science and Engineering Hunan UniversityChangsha410082China Clayton State University MorrowGA 30260USA
Currently,the top-rank-k has been widely applied to mine frequent patterns with a rank not exceeding *** the existing algorithms,although a level-wise-search could fully mine the target patterns,it usually leads to th... 详细信息
来源: 评论
Closed-Loop Safe Correction for Reinforcement Learning Policy  1
收藏 引用
4th International Conference on Ubiquitous Security, UbiSec 2024
作者: Yi, Zhi Lv, Qi Chen, Shuhong Liang, Ying Dai, Yinglong Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Hunan Normal University Changsha410081 China School of Computer Science and Cyber Engineering Guangzhou University Guangzhou510006 China Blockchain Innovation Lab Swinburne University of Technology MelbourneVIC3122 Australia Molecular Nutrition Branch National Engineering Research Center of Rice and By-product Deep Processing College of Food Science and Engineering Central South University of Forestry and Technology Hunan Changsha410004 China
Trial and error learning is an approach with uncertain consequences. How to maintain policy security, stability, and efficiency under controlled circumstances, posing a significant academic challenge. Such as Reinforc... 详细信息
来源: 评论
Exploring the Impact of Non-Verbal Virtual Agent Behavior on User Engagement in Argumentative Dialogues
arXiv
收藏 引用
arXiv 2024年
作者: Aicher, Annalena Bea Minker, Wolfgang Matsuda, Yuki André, Elisabeth Yasumoto, Keichii Ultes, Stefan Human-Centered Artificial Intelligence University of Augsburg Augsburg Germany Institute of Communications Engineering Ulm University Ulm Germany Faculty of Environmental Life Natural Science and Technology Okayama University Okayama Japan Ubiquitous Computing Systems Laboratory NAIST Ikoma Nara Japan Natural Language Generation and Dialogue Systems University of Bamberg Bamberg Germany
Engaging in discussions that involve diverse perspectives and exchanging arguments on a controversial issue is a natural way for humans to form opinions. In this process, the way arguments are presented plays a crucia... 详细信息
来源: 评论
Large Generative Model-assisted Talking-face Semantic Communication System
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Feibo Tu, Siwei Dong, Li Pan, Cunhua Wang, Jiangzhou You, Xiaohu Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China School of Information Science and Engineering Hunan Normal University Changsha China Changsha Social Laboratoryof Artificial Intelligence Hunan University of Technology and Business Changsha China The National Mobile Communications Research Laboratory Southeast University Nanjing210096 China The National Mobile Communications Research Laboratory Southeast University Nanjing China The Purple Mountain Laboratories Nanjing China
The rapid development of generative Artificial Intelligence (AI) continually unveils the potential of Semantic Communication (SemCom). However, current talking-face SemCom systems still encounter challenges such as lo... 详细信息
来源: 评论
Hierarchical Policies of Subgoals for Safe Deep Reinforcement Learning  2nd
Hierarchical Policies of Subgoals for Safe Deep Reinforcem...
收藏 引用
2nd International Conference on Ubiquitous Security, UbiSec 2022
作者: Yu, Fumin Gao, Feng Yuan, Yao Xing, Xiaofei Dai, Yinglong College of Information Science and Engineering Hunan Normal University Changsha410081 China School of Computer Science and Cyber Engineering Guangzhou University Guangzhou510006 China College of Liberal Arts and Sciences National University of Defense Technology Changsha410073 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Changsha410081 China
Reinforcement learning is a machine learning method that relies on the agent to learn by trial and error to solve decision optimization problems. It is well known that an agent based on deep reinforcement learning in ... 详细信息
来源: 评论
Automatic decision support for public opinion governance of urban public events  4th
Automatic decision support for public opinion governance of ...
收藏 引用
4th International Conference on Intelligent computing, Communication and Devices, ICCD 2018
作者: Li, Zhaoxuan Liu, Wuying Laboratory of Language Engineering and Computing Guangdong University of Foreign Studies Guangzhou China Engineering Research Center for Cyberspace Content Security Guangdong University of Foreign Studies Guangzhou510420 China
Though the process of urbanization in China is accelerating and the size of the cities continues to expand, the urban danger sources are increasing. When public emergencies such as natural disasters, major accidents, ... 详细信息
来源: 评论
Sparse Variational Autoencoder-Based Interpretable Bimodal Word Embeddings
Sparse Variational Autoencoder-Based Interpretable Bimodal W...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Jingyao Tang Weiyu Zhong Qianhua Cai Guojun Lu Zehao Yan Yun Xue Xinguang Li Laboratory of Language Engineering and Computing Guangdong University of Foreign Studies Guangzhou China School of Physics and Telecommunication Engineering South China Normal University Guangzhou China
Word embedding is a basic task in the field of natural language processing, which is widely applied to a variety of tasks. In spite of delivering the semantic information, there is no meaningful explanation for specif... 详细信息
来源: 评论
Lightweight Vision Model-based Multi-user Semantic Communication Systems
arXiv
收藏 引用
arXiv 2025年
作者: Jiang, Feibo Tu, Siwei Dong, Li Wang, Kezhi Yang, Kun Liu, Ruiqi Pan, Cunhua Wang, Jiangzhou Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha410081 China School of Information Science and Engineering Hunan Normal University Changsha410081 China School of Computer Science Hunan University of Technology and Business Changsha410205 China Xiangjiang Laboratory Changsha410205 China Department of Computer Science Brunel University London United Kingdom School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Changchun Institute of Technology China Wireless and Computing Research Institute ZTE Corporation Beijing100029 China National Mobile Communications Research Laboratory Southeast University Nanjing210096 China National Mobile Communications Research Laboratory Southeast University Nanjing China Purple Mountain Laboratories Nanjing China
Semantic Communication (SemCom) is a promising new paradigm for next-generation communication systems, emphasizing the transmission of core information, particularly in environments characterized by uncertainty, noise... 详细信息
来源: 评论
PoE: a Panel of Experts for Generalized Automatic Dialogue Assessment
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Chen D'Haro, Luis Fernando Zhang, Qiquan Friedrichs, Thomas Li, Haizhou The Human Language Technology Group at Electrical & Computer Engineering Department National University of Singapore Singapore Spain Pte Ltd Singapore The Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen China
Chatbots are expected to be knowledgeable across multiple domains, e.g. for daily chit-chat, exchange of information, and grounding in emotional situations. To effectively measure the quality of such conversational ag... 详细信息
来源: 评论