咨询与建议

限定检索结果

文献类型

  • 416 篇 会议
  • 386 篇 期刊文献

馆藏范围

  • 802 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 535 篇 工学
    • 315 篇 计算机科学与技术...
    • 282 篇 软件工程
    • 108 篇 控制科学与工程
    • 85 篇 生物工程
    • 79 篇 电气工程
    • 77 篇 生物医学工程(可授...
    • 76 篇 信息与通信工程
    • 62 篇 机械工程
    • 57 篇 光学工程
    • 52 篇 电子科学与技术(可...
    • 30 篇 化学工程与技术
    • 27 篇 仪器科学与技术
    • 19 篇 航空宇航科学与技...
    • 18 篇 力学(可授工学、理...
    • 18 篇 动力工程及工程热...
    • 14 篇 材料科学与工程(可...
    • 13 篇 船舶与海洋工程
    • 11 篇 交通运输工程
  • 328 篇 理学
    • 186 篇 数学
    • 93 篇 生物学
    • 89 篇 物理学
    • 58 篇 统计学(可授理学、...
    • 53 篇 系统科学
    • 26 篇 化学
  • 119 篇 管理学
    • 77 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 22 篇 工商管理
  • 41 篇 医学
    • 38 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 10 篇 经济学
  • 10 篇 法学
  • 7 篇 农学
  • 3 篇 教育学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 19 篇 image segmentati...
  • 18 篇 image processing
  • 18 篇 machine learning
  • 17 篇 feature extracti...
  • 17 篇 training
  • 15 篇 semantics
  • 13 篇 pattern recognit...
  • 12 篇 object detection
  • 11 篇 electroencephalo...
  • 10 篇 convolution
  • 10 篇 laboratories
  • 9 篇 image reconstruc...
  • 9 篇 intelligent cont...
  • 8 篇 deep learning
  • 8 篇 deep neural netw...
  • 8 篇 neural networks
  • 8 篇 computational mo...
  • 8 篇 hardware
  • 8 篇 artificial intel...
  • 8 篇 multi-agent syst...

机构

  • 82 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 32 篇 shenzhen huazhon...
  • 27 篇 key laboratory o...
  • 26 篇 key laboratory o...
  • 25 篇 alibaba group
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 12 篇 school of artifi...
  • 12 篇 huazhong univers...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 11 篇 the school of ar...
  • 11 篇 the department o...
  • 10 篇 key laboratory o...
  • 10 篇 the shanghai art...
  • 9 篇 key laboratory o...
  • 9 篇 institute for pa...
  • 9 篇 school of artifi...

作者

  • 61 篇 wu dongrui
  • 56 篇 sang nong
  • 47 篇 gao changxin
  • 29 篇 hai-tao zhang
  • 28 篇 cao zhiguo
  • 26 篇 zeng zhigang
  • 24 篇 wang xiang
  • 23 篇 ding mingyue
  • 23 篇 liu jian
  • 22 篇 zhang shiwei
  • 20 篇 zhigang zeng
  • 20 篇 jian liu
  • 18 篇 huang jian
  • 18 篇 jian huang
  • 17 篇 xi li
  • 17 篇 tian jinwen
  • 17 篇 qing zhiwu
  • 16 篇 zhang hai-tao
  • 16 篇 pan linqiang
  • 16 篇 mingyue ding

语言

  • 752 篇 英文
  • 33 篇 其他
  • 17 篇 中文
检索条件"机构=Laboratory for State Key Image Processing & Intelligence Control"
802 条 记 录,以下是201-210 订阅
排序:
Fog images Generation About Unmanned Surface Vessels with Improved Generative Adversarial Network
Fog Images Generation About Unmanned Surface Vessels with Im...
收藏 引用
Chinese control Conference (CCC)
作者: Yifeng Tang Zhihui Huang Chuancong Tang Chuanshang Luo Yifan Xu Bin Liu Hai-Tao Zhang Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation the Engineering Research Center of Autonomous Intelligent Unmanned Systems Wuhan China State Key Laboratory of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan China
This paper proposes a fog weather data augmentation method for the unmanned surface vessels (USVs) via improved Generative Adversarial Network(GAN) model. First, a generator scheme for GAN is proposed with the guided ...
来源: 评论
Low-Rank Optimal Transport for Robust Domain Adaptation
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第7期11卷 1667-1680页
作者: Bingrong Xu Jianhua Yin Cheng Lian Yixin Su Zhigang Zeng IEEE the School of Automation Wuhan University of TechnologyWuhan 430070China Intelligent Transportation Systems Research Center Wuhan University of TechnologyWuhan 430063 Chongqing Research Institute Wuhan University of TechnologyChongqingChina the School of Artificial Intelligence and Automation Huazhong University of Science and TechnologyWuhan 430074 the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China Wuhan 430074China
When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada... 详细信息
来源: 评论
Spatial Distillation based Distribution Alignment (SDDA) for Cross-Headset EEG Classification
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Dingkun Li, Siyang Wang, Ziwei Li, Wei Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen518000 China
A non-invasive brain-computer interface (BCI) enables direct interaction between the user and external devices, typically via electroencephalogram (EEG) signals. However, decoding EEG signals across different headsets... 详细信息
来源: 评论
Multi-View Contrastive Network (MVCNet) for Motor imagery Classification
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Ziwei Li, Siyang Chen, Xiaoqing Li, Wei Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen518000 China
Objective: An electroencephalography (EEG)-based brain-computer interface (BCI) serves as a direct communication pathway between the human brain and an external device. While supervised learning has been extensively e... 详细信息
来源: 评论
Global Consensus for Heterogeneous Saturated Multi-Agent Systems via Sampled-Data control  63
Global Consensus for Heterogeneous Saturated Multi-Agent Sys...
收藏 引用
63rd IEEE Conference on Decision and control, CDC 2024
作者: Qian, Juan Wang, Xiaoling Astolfi, Daniele Su, Housheng Jiang, Guo-Ping Nanjing University of Posts and Telecommunications College of Automation and the College of Artificial Intelligence Nanjing210023 China Nanjing210023 China Université Claude Bernard Lyon 1 Cnrs Lagepp Umr 5007 43 boulevard du 11 novembre 1918 VilleurbanneF-69100 France East China University of Science and Technology Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education Shanghai200237 China Huazhong University of Science and Technology School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Luoyu Road 1037 Wuhan430074 China
This paper addresses the global consensus problem for multi-input multi-output saturated systems within a sampled-data framework, aiming to advance global consensus, manage heterogeneous actuator saturation across com... 详细信息
来源: 评论
Deterministic-like data-driven discovery of stochastic differential equations via the Feynman–Kac formalism
收藏 引用
The European Physical Journal Special Topics 2024年 1-21页
作者: Ma, Chaoxiang Huang, Cheng Cheng, Cheng Li, Xiuting The College of Informatics Huazhong Agriculture University and the China–Poland Belt and Road Joint Laboratory on Measurement and Control Technology Huazhong University of Science and Technology Wuhan People’s Republic of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Ministry of Education Key Lab of Intelligent Control and Image Processing Wuhan China
This paper develops a data-driven deterministic identification architecture for discovering stochastic differential equations (SDEs) directly from data. The architecture first generates deterministic data for stochast...
来源: 评论
Disentangling Spatial and Temporal Learning for Efficient image-to-Video Transfer Learning
arXiv
收藏 引用
arXiv 2023年
作者: Qing, Zhiwu Zhang, Shiwei Huang, Ziyuan Zhang, Yingya Gao, Changxin Zhao, Deli Sang, Nong Key Laboratory of Image Processing Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Alibaba Group China ARC National University of Singapore Singapore
Recently, large-scale pre-trained language-image models like CLIP have shown extraordinary capabilities for understanding spatial contents, but naively transferring such models to video recognition still suffers from ... 详细信息
来源: 评论
VideoLCM: Video Latent Consistency Model
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Xiang Zhang, Shiwei Zhang, Han Liu, Yu Zhang, Yingya Gao, Changxin Sang, Nong Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Alibaba Group China Shanghai Jiao Tong University China
Consistency models have demonstrated powerful capability in efficient image generation and allowed synthesis within a few sampling steps, alleviating the high computational cost in diffusion models. However, the consi...
来源: 评论
A Physiological Signal Emotion Recognition Method Based on Domain Adaptation and Incremental Learning
A Physiological Signal Emotion Recognition Method Based on D...
收藏 引用
Cyber-Energy Systems and Intelligent Energy (ICCSIE), International Conference on
作者: Junnan Li Xiaoping Wang the School of Artificial Intelligence and Automation and the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China Huazhong University of Science and Technology Wuhan P. R. China
Temporal concept shift (TCS) is an unavoidable problem in physiological signal-based emotion recognition tasks, i.e., the data distribution of physiological signals is constantly changing over time, which gradually de...
来源: 评论
3D Cinemagraphy from a Single image
3D Cinemagraphy from a Single Image
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Xingyi Li Zhiguo Cao Huiqiang Sun Jianming Zhang Ke Xian Guosheng Lin Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology S-Lab Nanyang Technological University Adobe Research
We present 3D Cinemagraphy, a new technique that mar-ries 2D image animation with 3D photography. Given a single still image as input, our goal is to generate a video that contains both visual content animation and ca...
来源: 评论