咨询与建议

限定检索结果

文献类型

  • 16 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 12 篇 计算机科学与技术...
    • 11 篇 软件工程
    • 8 篇 控制科学与工程
    • 3 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 农业工程
    • 1 篇 信息与通信工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 4 篇 理学
    • 3 篇 物理学
    • 1 篇 生物学
  • 3 篇 管理学
    • 2 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 3 篇 reinforcement le...
  • 2 篇 automation
  • 2 篇 semantics
  • 2 篇 training
  • 2 篇 adaptation model...
  • 1 篇 digital images
  • 1 篇 legged locomotio...
  • 1 篇 tensor completio...
  • 1 篇 imaging
  • 1 篇 springs
  • 1 篇 head
  • 1 篇 data integration
  • 1 篇 task analysis
  • 1 篇 reliability engi...
  • 1 篇 three-dimensiona...
  • 1 篇 tensor recovery
  • 1 篇 anomaly detectio...
  • 1 篇 signal encoding
  • 1 篇 reliability theo...
  • 1 篇 cameras

机构

  • 3 篇 active perceptio...
  • 2 篇 baidu
  • 2 篇 key laboratory o...
  • 2 篇 laboratory of ad...
  • 2 篇 the advanced per...
  • 2 篇 ihu strasbourg s...
  • 2 篇 department of su...
  • 2 篇 alibaba group
  • 2 篇 department of in...
  • 2 篇 lab istituto ita...
  • 1 篇 department of ps...
  • 1 篇 electrical engin...
  • 1 篇 the discipline o...
  • 1 篇 university of sc...
  • 1 篇 active perceptio...
  • 1 篇 the commonwealth...
  • 1 篇 huzhou institute...
  • 1 篇 visual artificia...
  • 1 篇 universitat autò...
  • 1 篇 cibm center for ...

作者

  • 6 篇 liu yong
  • 4 篇 chen fei
  • 4 篇 fernandes miguel
  • 3 篇 dai guang
  • 3 篇 xing jiazheng
  • 3 篇 poni stefano
  • 3 篇 teng tao
  • 3 篇 wang mengmeng
  • 3 篇 semini claudio
  • 3 篇 fiameni giuseppe
  • 3 篇 caldwell darwin
  • 3 篇 scaldaferri anto...
  • 3 篇 gatti matteo
  • 3 篇 wang jingdong
  • 2 篇 metzler christop...
  • 2 篇 aloimonos yianni...
  • 2 篇 singh chahat dee...
  • 2 篇 yong liu
  • 2 篇 rajyaguru naitri
  • 2 篇 shah sachin

语言

  • 21 篇 英文
  • 1 篇 其他
检索条件"机构=Laboratory of Advanced Perception on Robotics and Intelligent Learning"
22 条 记 录,以下是1-10 订阅
排序:
learning to Model Diverse Driving Behaviors in Highly Interactive Autonomous Driving Scenarios With Multiagent Reinforcement learning
收藏 引用
IEEE Systems Journal 2025年 第1期19卷 317-326页
作者: Liu, Weiwei Hu, Wenxuan Jing, Wei Lei, Lanxin Gao, Lingping Liu, Yong Zhejiang University The Advanced Perception on Robotics and Intelligent Learning Lab College of Control Science and Engineering Hangzhou310027 China Huzhou Institute of Zhejiang University Zhejiang 310027 China Alibaba DAMO Academy Autonomous Driving Lab Zhejiang 311121 China Huzhou University College of Information Engineering Zhejiang 313000 China
Autonomous vehicles trained through multiagent reinforcement learning (MARL) have shown impressive results in many driving scenarios. However, the performance of these trained policies can be impacted when faced with ... 详细信息
来源: 评论
EDA: Enhanced Domain-Adversarial Training for Anatomical Landmark Detection
EDA: Enhanced Domain-Adversarial Training for Anatomical Lan...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Fan Yang S. Kevin Zhou School of Biomedical Engineering Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China Center for Medical Imaging Robotics Analytic Computing & Learning (MIRACLE) Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou Jiangsu China Key Laboratory of Precision and Intelligent Chemistry USTC Hefei Anhui China Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China
Manually annotating anatomical landmarks in medical images requires experienced clinicians and is a labor-intensive process. However, recent AI-assisted methods for landmark detection often rely on the training and te... 详细信息
来源: 评论
TransVOS: Video object segmentation with transformers
arXiv
收藏 引用
arXiv 2021年
作者: Mei, Jianbiao Wang, Mengmeng Lin, Yeneng Yuan, Yi Liu, Yong Laboratory of Advanced Perception on Robotics and Intelligent Learning College of Control Science and Engineering Zhejiang University NetEase Fuxi AI Lab
Recently, Space-Time Memory Network (STM) based methods have achieved state-of-the-art performance in semi-supervised video object segmentation (VOS). A crucial problem in this task is how to model the dependency both... 详细信息
来源: 评论
Robust tensor decomposition via orientation invariant tubal nuclear norms
收藏 引用
Science China(Technological Sciences) 2022年 第6期65卷 1300-1317页
作者: WANG AnDong ZHAO QiBin JIN Zhong LI Chao ZHOU GuoXu School of Automation Guangdong University of TechnologyGuangzhou 510006China School of Computer Science and Engineering Nanjing University of Science and TechnologyNanjing 210094China Tensor Learning Team RIKEN Center for Advanced Intelligence ProjectTokyo 103-0027Japan Key Laboratory of Intelligent Perception and System for High-Dimensional Information Ministry of EducationNanjing 210094China Key Laboratory of Intelligent Detection and the Internet of Things in Manufacturing Ministry of EducationGuangzhou 510006China
Aiming at recovering an unknown tensor(i.e.,multi-way array)corrupted by both sparse outliers and dense noises,robust tensor decomposition(RTD)serves as a powerful pre-processing tool for subsequent tasks like classif... 详细信息
来源: 评论
learning to Model Diverse Driving Behaviors in Highly Interactive Autonomous Driving Scenarios with Multi-Agent Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Weiwei, Liu Wenxuan, Hu Wei, Jing Lanxin, Lei Lingping, Gao Yong, Liu The Advanced Perception on Robotics and Intelligent Learning Lab College of Control Science and Enginneering Zhejiang University Hangzhou310027 China The Advanced Perception on Robotics and Intelligent Learning Lab Huzhou Institute Zhejiang University Huzhou China College of Information Engineering Huzhou University Huzhou China Department of Autonomous Driving Lab Alibaba DAMO Academy Hangzhou China
Autonomous vehicles trained through Multi-Agent Reinforcement learning (MARL) have shown impressive results in many driving scenarios. However, the performance of these trained policies can be impacted when faced with... 详细信息
来源: 评论
Visual Object Tracking across Diverse Data Modalities: A Review
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Mengmeng Ma, Teli Xin, Shuo Hou, Xiaojun Xing, Jiazheng Dai, Guang Wang, Jingdong Liu, Yong The Laboratory of Advanced Perception on Robotics and Intelligent Learning College of Control Science and Engineering Zhejiang University Zhejiang Hangzhou310027 China State Grid Shanxi Electric Power Company Limited China Baidu China
Visual Object Tracking (VOT) is an attractive and significant research area in computer vision, which aims to recognize and track specific targets in video sequences where the target objects are arbitrary and class-ag... 详细信息
来源: 评论
The importance and the limitations of Sim2Real for robotic manipulation in precision agriculture
arXiv
收藏 引用
arXiv 2020年
作者: Rizzardo, Carlo Katyara, Sunny Fernandes, Miguel Chen, Fei Active Perception and Robot Interactive Learning Laboratory Department of Advanced Robotics Istituto Italiano di Tecnologia Via Morego 30 Genova16163 Italy
In recent years Sim2Real approaches have brought great results to robotics. Techniques such as model-based learning or domain randomization can help overcome the gap between simulation and reality, but in some situati... 详细信息
来源: 评论
Grapevine Winter Pruning Automation: On Potential Pruning Points Detection through 2D Plant Modeling using Grapevine Segmentation  11
Grapevine Winter Pruning Automation: On Potential Pruning Po...
收藏 引用
11th IEEE Annual International Conference on CYBER Technology in Automation, Control, and intelligent Systems, CYBER 2021
作者: Fernandes, Miguel Scaldaferri, Antonello Fiameni, Giuseppe Teng, Tao Gatti, Matteo Poni, Stefano Semini, Claudio Caldwell, Darwin Chen, Fei Active Perception and Robot Interactive Learning Laboratory Istituto Italiano di Tecnologia Department of Advanced Robotics Genova16163 Italy Italy Università Cattolica Del Sacro Cuore Department of Sustainable Crop Production Piacenza29122 Italy Lab Istituto Italiano di Tecnologia Genova16163 Italy T-Stone Robotics Institute The Chinese University of Hong Kong Department of Mechanical and Automation Engineering Hong Kong
Grapevine winter pruning is a complex task, that requires skilled workers to execute it correctly. The complexity of this task is also the reason why it is time consuming. Considering that this operation takes about 8... 详细信息
来源: 评论
CodedVO: Coded Visual Odometry
收藏 引用
IEEE robotics and Automation Letters 2024年 1-7页
作者: Shah, Sachin Rajyaguru, Naitri Singh, Chahat Deep Metzler, Christopher Aloimonos, Yiannis UMD Intelligent Sensing Laboratory University of Maryland Institute for Advanced Computer Studies University of Maryland College Park MD USA Perception and Robotics Group University of Maryland Institute for Advanced Computer Studies University of Maryland College Park MD USA
Autonomous robots often rely on monocular cameras for odometry estimation and navigation. However, the scale ambiguity problem presents a critical barrier to effective monocular visual odometry. In this paper, we pres... 详细信息
来源: 评论
TryOn-Adapter: Efficient Fine-Grained Clothing Identity Adaptation for High-Fidelity Virtual Try-On
arXiv
收藏 引用
arXiv 2024年
作者: Xing, Jiazheng Xu, Chao Qian, Yijie Liu, Yang Dai, Guang Sun, Baigui Liu, Yong Wang, Jingdong Laboratory of Advanced Perception on Robotics and Intelligent Learning College of Control Science and Engineering Zhejiang University Zhejiang Hangzhou310027 China Alibaba Group China SGIT AI Lab State Grid Shaanxi Electric Power Company China Baidu Inc China
Virtual try-on focuses on adjusting the given clothes to fit a specific person seamlessly while avoiding any distortion of the patterns and textures of the garment. However, the clothing identity uncontrollability and... 详细信息
来源: 评论