咨询与建议

限定检索结果

文献类型

  • 73 篇 会议
  • 36 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 110 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 73 篇 理学
    • 51 篇 数学
    • 23 篇 生物学
    • 20 篇 物理学
    • 18 篇 统计学(可授理学、...
    • 6 篇 化学
    • 4 篇 系统科学
  • 67 篇 工学
    • 53 篇 计算机科学与技术...
    • 51 篇 软件工程
    • 28 篇 信息与通信工程
    • 22 篇 生物工程
    • 8 篇 机械工程
    • 6 篇 光学工程
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 交通运输工程
    • 3 篇 安全科学与工程
    • 2 篇 冶金工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 石油与天然气工程
    • 1 篇 轻工技术与工程
    • 1 篇 核科学与技术
  • 23 篇 管理学
    • 15 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 13 篇 emotion recognit...
  • 6 篇 face recognition
  • 4 篇 financial market...
  • 4 篇 neural networks
  • 4 篇 feature extracti...
  • 4 篇 training
  • 4 篇 convolutional ne...
  • 3 篇 deep neural netw...
  • 3 篇 random variables
  • 3 篇 graphic methods
  • 3 篇 image recognitio...
  • 2 篇 object detection
  • 2 篇 task analysis
  • 2 篇 trees (mathemati...
  • 2 篇 automation
  • 2 篇 recommender syst...
  • 2 篇 self-supervised ...
  • 2 篇 convolution
  • 2 篇 factorization
  • 2 篇 predictive model...

机构

  • 23 篇 laboratory of al...
  • 23 篇 hse university l...
  • 15 篇 sber ai lab mosc...
  • 13 篇 laboratory of al...
  • 8 篇 national researc...
  • 7 篇 hse university n...
  • 6 篇 national researc...
  • 5 篇 laboratory of al...
  • 3 篇 lobachevsky stat...
  • 3 篇 moscow
  • 3 篇 laboratory of di...
  • 3 篇 national researc...
  • 3 篇 laboratory of al...
  • 3 篇 department of in...
  • 2 篇 laboratory of al...
  • 2 篇 laboratory of al...
  • 2 篇 st. petersburg d...
  • 2 篇 isp ras research...
  • 2 篇 national researc...
  • 2 篇 laboratory of al...

作者

  • 35 篇 savchenko andrey...
  • 9 篇 andrey v. savche...
  • 9 篇 savchenko andrey
  • 8 篇 batsyn mikhail
  • 6 篇 bychkov ilya
  • 5 篇 pardalos panos m...
  • 4 篇 gribanov dmitry
  • 4 篇 koldanov p.a.
  • 4 篇 andrey savchenko
  • 3 篇 pardalos panos
  • 3 篇 koldanov a.p.
  • 3 篇 kalyagin valeriy
  • 3 篇 koldanov petr a.
  • 3 篇 shumilov ivan
  • 3 篇 savchenko a.v.
  • 3 篇 makarov ilya
  • 3 篇 grechikhin ivan ...
  • 3 篇 malyshev dmitry
  • 3 篇 utkina irina
  • 3 篇 demochkina polin...

语言

  • 107 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Laboratory of Algorithms and Technologies for Network Analysis"
110 条 记 录,以下是61-70 订阅
排序:
LARGE RAW EMOTIONAL DATASET WITH AGGREGATION MECHANISM
arXiv
收藏 引用
arXiv 2022年
作者: Kondratenko, Vladimir Sokolov, Artem Karpov, Nikolay Kutuzov, Oleg Savushkin, Nikita Minkin, Fyodor Sber Russia Nvidia Armenia HSE University Laboratory of Algorithms and Technologies for Network Analysis Russia
We present a new data set for speech emotion recognition (SER) tasks called Dusha. The corpus contains approximately 350 hours of data, more than 300 000 audio recordings with Russian speech and their transcripts. The... 详细信息
来源: 评论
CA-SER: Cross-Attention Feature Fusion for Speech Emotion Recognition  27
CA-SER: Cross-Attention Feature Fusion for Speech Emotion Re...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Deeb, Bashar M. Savchenko, Andrey Makarov, Ilya MIPT Moscow Russia Laboratory of Algorithms and Technologies for Network Analysis HSE University Nizhny Novgorod Russia Sber AI Lab Moscow Russia Moscow Russia ISP RAS Research Center for Trusted Artificial Intelligence Moscow Russia
In this paper, we introduce a novel tool for speech emotion recognition, CA-SER, that borrows self-supervised learning to extract semantic speech representations from a pre-trained wav2vec 2.0 model and combine them w... 详细信息
来源: 评论
Dota Underlords Game Is NP-Complete
arXiv
收藏 引用
arXiv 2020年
作者: Ponomarenko, Alexander A. Sirotkin, Dmitry V. Laboratory of Algorithms and Technologies for Network Analysis National Research University Higher School of Economics Nizhny Novgorod Russia
In this paper, we demonstrate how the problem of the optimal team choice in the popular computer game Dota Underlords can be reduced to the problem of linear integer programming. We propose a model and solve it for th... 详细信息
来源: 评论
Optimization of Gain in Symmetrized Itakura-Saito Discrimination for Pronunciation Learning  19th
Optimization of Gain in Symmetrized Itakura-Saito Discrimina...
收藏 引用
19th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2020
作者: Savchenko, Andrey V. Savchenko, Vladimir V. Savchenko, Lyudmila V. Laboratory of Algorithms and Technologies for Network Analysis National Research University Higher School of Economics Nizhny Novgorod Russia Nizhny Novgorod State Linguistic University Nizhny Novgorod Russia Department of Information Systems and Technologies National Research University Higher School of Economics Nizhny Novgorod Russia
This paper considers an assessment and evaluation of the pronunciation quality in computer-aided language learning systems. We propose the novel distortion measure for speech processing by using the gain optimization ... 详细信息
来源: 评论
Faster Exploration of Some Temporal Graphs  1
Faster Exploration of Some Temporal Graphs
收藏 引用
1st Symposium on Algorithmic Foundations of Dynamic networks, SAND 2022
作者: Adamson, Duncan Gusev, Vladimir V. Malyshev, Dmitriy Zamaraev, Viktor Department of Computer Science Reykjavik University Iceland Materials Innovation Factory University of Liverpool United Kingdom Laboratory of Algorithms and Technologies for Network Analysis HSE University Russia Nizhny Novgorod Russia Department of Computer Science University of Liverpool United Kingdom
A temporal graph G = (G1, G2,..., GT ) is a graph represented by a sequence of T graphs over a common set of vertices, such that at the ith time step only the edge set Ei is active. The temporal graph exploration prob... 详细信息
来源: 评论
HSEmotion Team at the 6th ABAW Competition: Facial Expressions, Valence-Arousal and Emotion Intensity Prediction
arXiv
收藏 引用
arXiv 2024年
作者: Savchenko, Andrey V. Sber AI Lab Moscow Russia HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia
This article presents our results for the sixth Affective Behavior analysis in-the-wild (ABAW) competition. To improve the trustworthiness of facial analysis, we study the possibility of using pre-trained deep models ... 详细信息
来源: 评论
HSEmotion Team at the 7th ABAW Challenge: Multi-Task Learning and Compound Facial Expression Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Savchenko, Andrey V. Sber AI Lab Moscow Russia HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia
In this paper, we describe the results of the HSEmotion team in two tasks of the seventh Affective Behavior analysis in-the-wild (ABAW) competition, namely, multi-task learning for simultaneous prediction of facial ex... 详细信息
来源: 评论
Leveraging Pre-trained Multi-task Deep Models for Trustworthy Facial analysis in Affective Behaviour analysis in-the-Wild
Leveraging Pre-trained Multi-task Deep Models for Trustworth...
收藏 引用
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Andrey V. Savchenko Sber AI Lab Moscow Russia Laboratory of Algorithms and Technologies for Network Analysis HSE University Nizhny Novgorod Russia
This article presents our results for the sixth Affective Behavior analysis in-the-wild (ABAW) competition. To improve the trustworthiness of facial analysis, we study the possibility of using pre-trained deep models ... 详细信息
来源: 评论
EmotiEffNet Facial Features in Uni-task Emotion Recognition in Video at ABAW-5 competition
arXiv
收藏 引用
arXiv 2023年
作者: Savchenko, Andrey V. Sber AI Lab Moscow Russia HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia
In this article, the results of our team for the fifth Affective Behavior analysis in-the-wild (ABAW) competition are presented. The usage of the pre-trained convolutional networks from the EmotiEffNet family for fram... 详细信息
来源: 评论
Gender domain adaptation for automatic speech recognition
Gender domain adaptation for automatic speech recognition
收藏 引用
International Symposium on Applied Machine Intelligence and Informatics (SAMI)
作者: Artem Sokolov Andrey V. Savchenko HSE University Nizhny Novgorod Russia Laboratory of Algorithms and Technologies for Network Analysis HSE University Nizhny Novgorod Russia
This paper is focused on the finetuning of acoustic models for speaker adaptation goals on a given gender. We pretrained the Transformer baseline model on Librispeech-960 and conducted experiments with finetuning on t... 详细信息
来源: 评论