咨询与建议

限定检索结果

文献类型

  • 152 篇 会议
  • 43 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 196 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 107 篇 工学
    • 59 篇 计算机科学与技术...
    • 54 篇 软件工程
    • 34 篇 信息与通信工程
    • 21 篇 光学工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 16 篇 电气工程
    • 14 篇 环境科学与工程(可...
    • 11 篇 仪器科学与技术
    • 8 篇 测绘科学与技术
    • 8 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 7 篇 化学工程与技术
    • 7 篇 航空宇航科学与技...
    • 4 篇 建筑学
  • 77 篇 理学
    • 47 篇 数学
    • 22 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 7 篇 化学
    • 7 篇 地质学
    • 6 篇 海洋科学
    • 5 篇 地球物理学
    • 4 篇 大气科学
    • 4 篇 系统科学
  • 21 篇 管理学
    • 12 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 13 篇 农学
    • 6 篇 农业资源与环境
    • 5 篇 作物学
  • 5 篇 医学
    • 5 篇 临床医学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 46 篇 remote sensing
  • 37 篇 hyperspectral im...
  • 36 篇 image processing
  • 22 篇 hyperspectral se...
  • 21 篇 laboratories
  • 19 篇 signal processin...
  • 19 篇 image analysis
  • 17 篇 pixel
  • 17 篇 image classifica...
  • 11 篇 object detection
  • 10 篇 feature extracti...
  • 9 篇 computer science
  • 9 篇 vectors
  • 8 篇 support vector m...
  • 8 篇 image segmentati...
  • 8 篇 spatial resoluti...
  • 8 篇 covariance matri...
  • 8 篇 principal compon...
  • 8 篇 layout
  • 7 篇 vegetation mappi...

机构

  • 16 篇 remote sensing s...
  • 16 篇 remote sensing s...
  • 14 篇 department of el...
  • 13 篇 remote sensing s...
  • 10 篇 remote sensing s...
  • 9 篇 department of ra...
  • 8 篇 image processing...
  • 5 篇 department of ra...
  • 5 篇 computer center ...
  • 5 篇 remote sensing i...
  • 4 篇 computer science...
  • 4 篇 remote sensing s...
  • 4 篇 electrical and c...
  • 4 篇 section of radio...
  • 4 篇 national key lab...
  • 4 篇 department of bi...
  • 4 篇 national cheng k...
  • 4 篇 department of el...
  • 3 篇 university of pe...
  • 3 篇 department of co...

作者

  • 39 篇 chein-i chang
  • 26 篇 chang chein-i
  • 15 篇 chang chein-i.
  • 10 篇 wu chao-cheng
  • 9 篇 velez-reyes migu...
  • 7 篇 yen-chieh ouyang
  • 6 篇 ming li
  • 6 篇 yan wu
  • 6 篇 lee san-kan
  • 6 篇 miguel velez-rey...
  • 6 篇 peng zhang
  • 6 篇 ouyang yen-chieh
  • 5 篇 chen hsian-min
  • 5 篇 qian du
  • 5 篇 zhang peng
  • 5 篇 chen clayton chi...
  • 5 篇 chao-cheng wu
  • 5 篇 li ming
  • 5 篇 wu yan
  • 4 篇 zhu j.

语言

  • 191 篇 英文
  • 3 篇 其他
  • 2 篇 中文
检索条件"机构=Laboratory of Applied Remote Sensing and Image Processing"
196 条 记 录,以下是41-50 订阅
排序:
Quality Inspection of Phalaenopsis Hybrids Using Hyperspectral Band Selection Techniques
Quality Inspection of Phalaenopsis Hybrids Using Hyperspectr...
收藏 引用
IEEE International Symposium on Geoscience and remote sensing (IGARSS)
作者: Yen-Chieh Ouyang Bo-Han Chen Meng-Chueh Lee Tsang-Sen Liu Mang Ou-Yang Hsian-Min Chen Chao-Cheng Wu Chia-Hsien Wen Min-Shao Shih Chein-I Chang Yung-Jhe Yan Department of Electrical Engineering National Chung Hsing University Taiwan Institute of communication Engineering National Chung Hsing University Taiwan Taiwan Agriculture Research Institute Nantou Taiwan Department of Electrical and Computer Engineering National Chiao-Tung University Hsinchu City Taiwan Center for Quantitative Imaging in Medicine Taichung Veterans General Hospital Taiwan Department of Electrical Engineering National Taipei University of Technology Taipei Taiwan Department of Computer Science and Information Management Providence University Taiwan Remote Sensing Signal and Image Processing Laboratory University of Maryland Baltimore MD USA
Fusarium wilt on Phalaenopsis is a disease that makes farmers suffer seriously. Although Phalaenopsis does not die immediately with Fusarium wilt, it seriously decreases the quality that buyers cannot accept. In this ... 详细信息
来源: 评论
A Subpixel Target Detection Approach to Hyperspectral image Classification
收藏 引用
IEEE Transactions on Geoscience and remote sensing 2017年 第9期55卷 5093-5114页
作者: Xue, Bai Yu, Chunyan Wang, Yulei Song, Meiping Li, Sen Wang, Lin Chen, Hsian-Min Chang, Chein-I Center for Hyperspectral Imaging in Remote Sensing Information and Technology College Dalian Maritime University Dalian China Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland Baltimore County BaltimoreMD21250 United States Key Laboratory of Spectral Imaging Technology Chinese Academy of Sciences Xi'an China State Key Laboratory of Integrated Services Networks Xi'an China School of Physics and Optoelectronic Engineering Xidian University Xi'an China Department of Medical Research Taichung Veterans General Hospital Taichung Taiwan Department of Computer Science and Information Management Providence University Taichung02912 Taiwan
Hyperspectral image classification faces various levels of difficulty due to the use of different types of hyperspectral image data. Recently, spectral-spatial approaches have been developed by jointly taking care of ... 详细信息
来源: 评论
Detection of Fusarium wilt on Phalaenopsis stem base region using band selection techniques  38
Detection of Fusarium wilt on Phalaenopsis stem base region ...
收藏 引用
38th Annual IEEE International Geoscience and remote sensing Symposium, IGARSS 2018
作者: Lee, Meng-Chueh Ma, Kenneth-Yeonkong Ouyang, Yen-Chieh Ou-Yang, Mang Guo, Horng-Yuh Liu, Tsang-Sen Chen, Hsian-Min Wu, Chao-Cheng Chang, Chgein-I Department of Communications Engineering National Chung Hsing University Taichung Taiwan Department of Electrical Engineering National Chung Hsing University Taichung Taiwan National Chiao-Tung University Department of Electrical and Computer Engineering Hsinchu City Taiwan Taiwan Agriculture Research Institute Nan-Tou Taiwan Center for Quantitative Imaging in Medicine Taichung Veterans General Hospital Taichung Taiwan Department of Electrical Engineering National Taipei University of Technology Taipei Taiwan Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland Baltimore County BaltimoreMD21250 United States
Phalaenopsis is a significant agriculture product with high economic value in Taiwan. However, the fusarium wilt causes Phalaenopsis leaves turning yellow, thinning, water loss, and finally died. This paper presents a... 详细信息
来源: 评论
Common Limitations of image processing Metrics: A Picture Story
arXiv
收藏 引用
arXiv 2021年
作者: Reinke, Annika Tizabi, Minu D. Sudre, Carole H. Eisenmann, Matthias Rädsch, Tim Baumgartner, Michael Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Bankhead, Peter Benis, Arriel Blaschko, Matthew Buettner, Florian Cardoso, M. Jorge Chen, Jianxu Cheplygina, Veronika Christodoulou, Evangelia Cimini, Beth A. Collins, Gary S. Engelhardt, Sandy Farahani, Keyvan Ferrer, Luciana Galdran, Adrian van Ginneken, Bram Glocker, Ben Godau, Patrick Haase, Robert Hamprecht, Fred Hashimoto, Daniel A. Heckmann-Nötzel, Doreen Hirsch, Peter Hoffman, Michael M. Huisman, Merel Isensee, Fabian Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kavur, A. Emre Kenngott, Hannes Kleesiek, Jens Kleppe, Andreas Koehler, Sven Kofler, Florian Kopp-Schneider, Annette Kooi, Thijs Kozubek, Michal Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moher, David Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Noyan, M. Alican Petersen, Jens Polat, Gorkem Rafelski, Susanne M. Rajpoot, Nasir Reyes, Mauricio Rieke, Nicola Riegler, Michael A. Rivaz, Hassan Saez-Rodriguez, Julio Sánchez, Clara I. Schroeter, Julien Saha, Anindo Selver, M. Alper Sharan, Lalith Shetty, Shravya Smeden, Maarten V.A.N. Stieltjes, Bram Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. Calster, Ben V.A.N. Varoquaux, Gaël Wiesenfarth, Manuel Yaniv, Ziv R. Jäger, Paul Maier-Hein, Lena Division of Intelligent Medical Systems and HI Helmholtz Imaging Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Intelligent Medical Systems Heidelberg Germany NCT Heidelberg DKFZ University Medical Center Heidelberg Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Division of Medical Image Computing Heidelberg Germany Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montréal Canada Division of Computational Pathology Dept of Pathology & Laboratory Medicine Indiana University School of Medicine IU Health Information and Translational Sciences Building Indianapolis United States University of Pennsylvania Richards Medical Research Laboratories FL7 PhiladelphiaPA United States Institute of Genetics and Cancer University of Edinburgh Edinburgh United Kingdom Department of Digital Medical Technologies Holon Institute of Technology Holon Israel European Federation for Medical Informatics Le Mont-sur-Lausanne Switzerland Center for Processing Speech and Images Department of Electrical Engineering KU Leuven Kasteelpark Arenberg 10 - box 2441 Leuven3001 Belgium Frankfurt/Mainz DKFZ UCT Frankfurt-Marburg Germany Heidelberg Germany Goethe University Frankfurt Department of Medicine Germany Goethe University Frankfurt Department of Informatics Germany Frankfurt Cancer Insititute Germany Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Dortmund Germany Department of Computer Science IT University of Copenhagen Copenhagen Denmark Imaging Platform Broad Institute of MIT and Harvard CambridgeMA United States Centre for St
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation. Performance metrics are particularly key for meaningful, obj... 详细信息
来源: 评论
R3-Net: A deep network for multi-oriented vehicle detection in aerial images and videos
arXiv
收藏 引用
arXiv 2018年
作者: Li, Qingpeng Mou, Lichao Xu, Qizhi Zhang, Yun Zhu, Xiao Xiang State Key Laboratory of Virtual Reality Technology and Systems Beijing Key Laboratory of Digital Media School of Computer Science and Engineering Beihang University Beijing100191 China Remote Sensing Technology Institute German Aerospace Center Wessling82234 Germany Signal Processing in Earth Observation Technical University of Munich Munich80333 Germany Canada Research Chair Laboratory in Advanced Geomatics Image Processing Department of Geodesy and Geomatics Engineering University of New Brunswick FrederictonNBE3B 5A3 Canada
Vehicle detection is a significant and challenging task in aerial remote sensing applications. Most existing methods detect vehicles with regular rectangle boxes and fail to offer the orientation of vehicles. However,... 详细信息
来源: 评论
Building Change Detection Improvement Using Topographic Correction Models
收藏 引用
Advances in remote sensing 2017年 第1期6卷 1-22页
作者: Shabnam Jabari Yun Zhang CRC Laboratory in Advanced Geomatics Image Processing Department of Geodesy and Geomatics Engineering University of New Brunswick Fredericton Canada Institution of Remote Sensing and Geographic Information System Peking University Beijing China
In the change detection application of remote sensing, commonly the variation in the brightness values of the pixels/objects in bi-temporal image is used as an indicator for detecting changes. However, there exist eff... 详细信息
来源: 评论
Convex cone volume analysis for finding endmembers in hyperspectral imagery
Convex cone volume analysis for finding endmembers in hypers...
收藏 引用
作者: Chang, Chein-I Xiong, Wei Chen, Shih-Yu Information and Technology College Dalian Maritime University Dalian China School of Physics and Optoelectronic Engineering Xidian University Xian China Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland Baltimore County BaltimoreMD21250 United States Department of Computer Science and Information Management Providence University Taichung Taiwan Department of Computer Science and Information Engineering National Yunlin University of Science and Technology Yunlin Taiwan
This paper presents a new approach, called convex cone volume analysis (CCVA), which can be considered as a partially constrained-abundance (abundance non-negativity constraint) technique to find endmembers. It can be... 详细信息
来源: 评论
A SUN-INDUCED VEGETATION FLUORESCENCE RETRIEVAL METHOD FROM TOP OF ATMOSPHERE RADIANCE FOR THE FLEX/SENTINEL-3 TANDEM MISSION
A SUN-INDUCED VEGETATION FLUORESCENCE RETRIEVAL METHOD FROM ...
收藏 引用
IEEE International Geoscience and remote sensing Symposium
作者: N. Sabater L. Alonso S. Cogliati J. Vicent C. Tenjo J. Verrelst J. Moreno Image Processing Laboratoy (IPL) University of Valencia Image Processing Laboratory (IPL) University of Valencia Remote Sensing of Environmental Dynamics Laboratory University of Milano-Bicocca (Italy)
A new fluorescence retrieval method is proposed to support ESA's 8th Earth Explorer FLuorescence EXplorer/Sentinel-3 (FLEX-S3) candidate tandem mission. FLEX is the first mission specially dedicated to measure the... 详细信息
来源: 评论
High-order CRF based on product-of-experts for unsupervised SAR image multiclass segmentation
High-order CRF based on product-of-experts for unsupervised ...
收藏 引用
Asian and Pacific Conference on Synthetic Aperture Radar (APSAR)
作者: Peng Zhang Ming Li Lin An Lu Jia Yan Wu Xidian University National Laboratory of Radar Signal Processing Xi‘ an China School of Electronic Engineering Xidian University Remote Sensing Image Processing and Fusion Group Xi'an China
Conditional random fields (CRF) model is suitable for image segmentation because this model directly defines the posterior distribution as a Gibbs field and allows one to capture the dependencies of the observed data.... 详细信息
来源: 评论
Recursive Automatic Target Generation Process for Unsupervised Hyperspectral Target Detection
Recursive Automatic Target Generation Process for Unsupervis...
收藏 引用
IEEE International Geoscience and remote sensing Symposium
作者: Cheng Gao Chein-I Chang Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland
Automatic target generation process (ATGP) has been found very useful and effective for unsupervised target detection. It performs a sequence of orthogonal subspace projection to extract potential targets of interest.... 详细信息
来源: 评论