咨询与建议

限定检索结果

文献类型

  • 152 篇 会议
  • 43 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 196 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 107 篇 工学
    • 59 篇 计算机科学与技术...
    • 54 篇 软件工程
    • 34 篇 信息与通信工程
    • 21 篇 光学工程
    • 20 篇 控制科学与工程
    • 17 篇 电子科学与技术(可...
    • 16 篇 电气工程
    • 14 篇 环境科学与工程(可...
    • 11 篇 仪器科学与技术
    • 8 篇 测绘科学与技术
    • 8 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 7 篇 化学工程与技术
    • 7 篇 航空宇航科学与技...
    • 4 篇 建筑学
  • 77 篇 理学
    • 47 篇 数学
    • 22 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 7 篇 化学
    • 7 篇 地质学
    • 6 篇 海洋科学
    • 5 篇 地球物理学
    • 4 篇 大气科学
    • 4 篇 系统科学
  • 21 篇 管理学
    • 12 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 13 篇 农学
    • 6 篇 农业资源与环境
    • 5 篇 作物学
  • 5 篇 医学
    • 5 篇 临床医学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 46 篇 remote sensing
  • 37 篇 hyperspectral im...
  • 36 篇 image processing
  • 22 篇 hyperspectral se...
  • 21 篇 laboratories
  • 19 篇 signal processin...
  • 19 篇 image analysis
  • 17 篇 pixel
  • 17 篇 image classifica...
  • 11 篇 object detection
  • 10 篇 feature extracti...
  • 9 篇 computer science
  • 9 篇 vectors
  • 8 篇 support vector m...
  • 8 篇 image segmentati...
  • 8 篇 spatial resoluti...
  • 8 篇 covariance matri...
  • 8 篇 principal compon...
  • 8 篇 layout
  • 7 篇 vegetation mappi...

机构

  • 16 篇 remote sensing s...
  • 16 篇 remote sensing s...
  • 14 篇 department of el...
  • 13 篇 remote sensing s...
  • 10 篇 remote sensing s...
  • 9 篇 department of ra...
  • 8 篇 image processing...
  • 5 篇 department of ra...
  • 5 篇 computer center ...
  • 5 篇 remote sensing i...
  • 4 篇 computer science...
  • 4 篇 remote sensing s...
  • 4 篇 electrical and c...
  • 4 篇 section of radio...
  • 4 篇 national key lab...
  • 4 篇 department of bi...
  • 4 篇 national cheng k...
  • 4 篇 department of el...
  • 3 篇 university of pe...
  • 3 篇 department of co...

作者

  • 39 篇 chein-i chang
  • 26 篇 chang chein-i
  • 15 篇 chang chein-i.
  • 10 篇 wu chao-cheng
  • 9 篇 velez-reyes migu...
  • 7 篇 yen-chieh ouyang
  • 6 篇 ming li
  • 6 篇 yan wu
  • 6 篇 lee san-kan
  • 6 篇 miguel velez-rey...
  • 6 篇 peng zhang
  • 6 篇 ouyang yen-chieh
  • 5 篇 chen hsian-min
  • 5 篇 qian du
  • 5 篇 zhang peng
  • 5 篇 chen clayton chi...
  • 5 篇 chao-cheng wu
  • 5 篇 li ming
  • 5 篇 wu yan
  • 4 篇 zhu j.

语言

  • 191 篇 英文
  • 3 篇 其他
  • 2 篇 中文
检索条件"机构=Laboratory of Applied Remote Sensing and Image Processing"
196 条 记 录,以下是51-60 订阅
排序:
remote sensing image change detection based on low-rank representation
Communications in Computer and Information Science
收藏 引用
Communications in Computer and Information Science 2014年 437卷 336-344页
作者: Cheng, Yan Jiang, Zhiguo Shi, Jun Zhang, Haopeng Meng, Gang Image Processing Center School of Astronautics Beihang University Beijing China Beijing Key Laboratory of Digital Media Beijing China Beijing Institute of Remote Sensing Information Beijing China
In this paper we propose an unsupervised approach based on lowrank representation (LRR) for change detection in remote sensing images. Given a pair of remote sensing images obtained from the same area but in different... 详细信息
来源: 评论
DOMAIN ADAPTATION WITH HIDDEN MARKOV RANDOM FIELDS
DOMAIN ADAPTATION WITH HIDDEN MARKOV RANDOM FIELDS
收藏 引用
IEEE International Geoscience and remote sensing Symposium
作者: Jan-Pieter Jacobs Guy Thoonen Devis Tuia Gustavo Camps-Valls Birgen Haest Paul Scheunders iMinds-Vision Lab University of Antwerp LaSIG laboratory Ecole Polytechnique Federale de Lausanne Image Processing Laboratory (IPL) Universitat de Valencia VITO-TAP Remote Sensing Department Flemish Institute for Technological Research
In this paper, we propose a method to match multitemporal sequences of hyperspectral images using Hidden Markov Random Fields. Based on the matching of the data manifold, the algorithm matches the reflectance spectra ... 详细信息
来源: 评论
Relationship exploration among PPI, ATGP and VCA via theoretical analysis
Relationship exploration among PPI, ATGP and VCA via theoret...
收藏 引用
作者: Chang, Chein-I. Wen, Chia-Hsien Wu, Chao-Cheng Department of Computer Science and Electrical Engineering Remote Sensing Signal and Image Processing Laboratory University of Maryland 1000 Hilltop Circle Baltimore MD 21250 United States Department of Computer Science and Information Engineering Providence University Taichung Taiwan Department of Computer Science and Information Management Providence University 200 Taiwan Boulevard Shalu Dist. Taichung City 43301 Taiwan Department of Electrical Engineering National Taipei University of Technology 1 Zhongxiao E. Rd. Taipei 106 Taiwan
The principle of orthogonality using orthogonal projection (OP) is the key concept to develop mean squared error estimation theory in signal processing and communications. It has also found its way in a wide variety o... 详细信息
来源: 评论
Unmixing analysis based on multiscale segmentation
Unmixing analysis based on multiscale segmentation
收藏 引用
Workshop on Hyperspectral image and Signal processing: Evolution in remote sensing, WHISPERS
作者: Maria C. Torres-Madronero Miguel Vélez-Reyes Laboratory for Applied Remote Sensing and Image Processing University of Puerto Rico-Mayaguez PR
Unmixing plays an important role in hyperspectral image processing and the wide range of application of hyperspectral data. Fully-automated techniques that take into account the spatial and spectral information captur... 详细信息
来源: 评论
Modified full abundance-constrained spectral unmixing
Modified full abundance-constrained spectral unmixing
收藏 引用
High-Performance Computing in remote sensing II
作者: Wong, Englin Chang, Chein-I Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland Baltimore County Baltimore MD 21250 United States
Abundance fully constrained least squares (FLCS) method has been widely used for spectral unmixing. A modified FCLS (MFCLS) was previously proposed for the same purpose to derive two iterative equations for solving fu... 详细信息
来源: 评论
RADIOMETRIC INTERCALIBRATION OF THE MICROWAVE HUMIDITY SOUNDER ON NOAA-18, METOP-A, AND NOAA-19 USING SAPHIR ON MEGHA-TROPIQUES
RADIOMETRIC INTERCALIBRATION OF THE MICROWAVE HUMIDITY SOUND...
收藏 引用
IEEE International Geoscience and remote sensing Symposium
作者: Linwood Jones Saswati Datta Andrea Santos-Garcia James R. Wang Vivienne Payne Nicholas Viltard Thomas Wilheit Central Florida Remote Sensing Lab University of Central Florida Orlando FL 32816-2362 Data and Image Processing Consultants Morrisville NC 27560 Science Systems and Applications Inc. Lanham MD 20706 Jet Propulsion Laboratory California Institute of Technology Pasadena CA91109 Laboratorie Atmospheres Milieux Observations Spatiales University of Paris Paris France Texas A&M University Ashville NC
The purpose of this paper is to ascertain the use of SAPHIR (in a low earth orbit) for radiometric brightness temperature, Tb, intercalibration of sounder channel sensors (in near polar orbits) within the context of t... 详细信息
来源: 评论
SAR image Multiclass Segmentation Using a Multiscale TMF Model in Wavelet Domain
收藏 引用
IEEE Geoscience and remote sensing Letters 2012年 第6期9卷 1099-1103页
作者: Peng Zhang Ming Li Yan Wu Ming Liu Fan Wang Lu Gan National Key Laboratory of Radar Signal Processing Xidian University Xi'an China Remote Sensing Image Processing and Fusion Group Xidian University Xi'an China
The triplet Markov field (TMF) model recently proposed is suitable for dealing with nonstationary synthetic aperture radar (SAR) image segmentation. In this letter, we propose a multiscale TMF model in wavelet domain,... 详细信息
来源: 评论
DISCOVERING SINGLE CLASSES IN remote sensing imageS WITH ACTIVE LEARNING
DISCOVERING SINGLE CLASSES IN REMOTE SENSING IMAGES WITH ACT...
收藏 引用
IEEE International Geoscience and remote sensing Symposium
作者: M. Furlani D. Tuia J. Munoz-Mari F. Bovolo G. Camps-Valls L. Bruzzone Remote Sensing Laboratory University Trento Laboratory of Geographic Information Systems Lausanne EPFL Image Processing Laboratory University of Valencia
When dealing with supervised target detection, the acquisition of labeled samples is one of the most critical phases: the samples must be yet representative of the class of interest, but must also be found among a vas... 详细信息
来源: 评论
SEMISUPERVISED NONLINEAR FEATURE EXTRACTION FOR image CLASSIFICATION
SEMISUPERVISED NONLINEAR FEATURE EXTRACTION FOR IMAGE CLASSI...
收藏 引用
IEEE International Geoscience and remote sensing Symposium
作者: Emma Izquierdo-Verdiguier Luis Gomez-Chova Lorenzo Bruzzone Gustavo Camps-Valls Image Processing Laboratory (IPL). Universitat de Valencia Remote Sensing Laboratory Dept. of Information Engineering and Computer Science. University of Trento
Feature extraction is of paramount importance for an accurate classification of remote sensing images. Techniques based on data transformations are widely used in this context. However, linear feature extraction algor... 详细信息
来源: 评论
Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model
收藏 引用
Pattern Recognition 2012年 第11期45卷 4018-4033页
作者: Peng Zhang Ming Li Yan Wu Lu Gan Ming Liu Fan Wang Gaofeng Liu National Key Laboratory of Radar Signal Processing Xidian University Xi'an 710071 China Remote Sensing Image Processing and Fusion Group School of Electronic Engineering Xidian University P.O. Box 140 Xi'an Shaanxi 710071 China
Triplet Markov fields (TMF) model proposed recently is suitable for nonstationary image segmentation. For synthetic aperture radar (SAR) image segmentation, TMF model can adopt diverse statistical models for SAR data ... 详细信息
来源: 评论