咨询与建议

限定检索结果

文献类型

  • 203 篇 会议
  • 112 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 316 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 163 篇 工学
    • 81 篇 计算机科学与技术...
    • 65 篇 软件工程
    • 61 篇 控制科学与工程
    • 26 篇 机械工程
    • 25 篇 光学工程
    • 25 篇 生物医学工程(可授...
    • 23 篇 仪器科学与技术
    • 18 篇 电气工程
    • 18 篇 生物工程
    • 15 篇 化学工程与技术
    • 13 篇 信息与通信工程
    • 9 篇 材料科学与工程(可...
    • 9 篇 电子科学与技术(可...
    • 5 篇 力学(可授工学、理...
    • 4 篇 建筑学
    • 4 篇 土木工程
  • 98 篇 理学
    • 46 篇 数学
    • 38 篇 物理学
    • 19 篇 生物学
    • 16 篇 系统科学
    • 14 篇 统计学(可授理学、...
    • 13 篇 化学
    • 5 篇 大气科学
  • 27 篇 医学
    • 22 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 26 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 3 篇 教育学
  • 3 篇 农学
  • 2 篇 经济学
  • 2 篇 艺术学
  • 1 篇 法学

主题

  • 29 篇 robotics and aut...
  • 20 篇 laboratories
  • 17 篇 atomic force mic...
  • 14 篇 humans
  • 13 篇 intelligent robo...
  • 13 篇 fuzzy cognitive ...
  • 12 篇 mobile robots
  • 12 篇 control systems
  • 11 篇 neural networks
  • 11 篇 robots
  • 11 篇 robot sensing sy...
  • 10 篇 cameras
  • 9 篇 modeling
  • 8 篇 fuzzy logic
  • 8 篇 automation
  • 7 篇 uncertainty
  • 7 篇 robustness
  • 6 篇 force
  • 6 篇 robust control
  • 6 篇 manipulators

机构

  • 42 篇 state key labora...
  • 12 篇 university of ch...
  • 12 篇 department of el...
  • 11 篇 department of el...
  • 11 篇 institutes for r...
  • 9 篇 laboratory of ro...
  • 9 篇 department of ly...
  • 8 篇 department of el...
  • 7 篇 laboratory of el...
  • 7 篇 department of el...
  • 6 篇 state key labora...
  • 5 篇 laboratory of au...
  • 5 篇 department of el...
  • 5 篇 graduate univers...
  • 4 篇 laboratory for a...
  • 4 篇 tianjin key labo...
  • 4 篇 department of el...
  • 4 篇 graduate school ...
  • 4 篇 chinese academy ...
  • 4 篇 state key labora...

作者

  • 24 篇 ning xi
  • 21 篇 xi ning
  • 17 篇 liu lianqing
  • 17 篇 wang yuechao
  • 16 篇 yuechao wang
  • 15 篇 lianqing liu
  • 15 篇 dong zaili
  • 12 篇 peter p. groumpo...
  • 11 篇 zaili dong
  • 10 篇 li guangyong
  • 10 篇 li mi
  • 10 篇 s.g. tzafestas
  • 9 篇 guangyong li
  • 9 篇 xiao xiubin
  • 9 篇 zhang weijing
  • 7 篇 groumpos peter p...
  • 6 篇 antonios gastera...
  • 6 篇 mi li
  • 5 篇 peter groumpos
  • 5 篇 a. amanatiadis

语言

  • 281 篇 英文
  • 30 篇 其他
  • 5 篇 中文
检索条件"机构=Laboratory of Automation and Robotics Department ofElectrical and Computer Engineering"
316 条 记 录,以下是71-80 订阅
排序:
Creating New Knowledge through Intelligent & Cognitive Control: Reconsidering Control and automation Science
收藏 引用
IFAC-PapersOnLine 2019年 第25期52卷 551-555页
作者: Peter Groumpos Emeritus Professor Laboratory for Automation and Robotics Department of Electrical and Computer Engineering University of Patras Rion
Creating new knowledge is a very complicated process. Understanding the human brain is one of the greatest challenges facing 21st century science. Knowledge acquisition involves complex cognitive processes: perception... 详细信息
来源: 评论
Intelligent Cost-Oriented Manufacturing Applications to Energy Buildings using Fuzzy Experts
收藏 引用
IFAC-PapersOnLine 2019年 第25期52卷 523-526页
作者: Groumpos Peter Emeritus Professor Laboratory for Automation and Robotics Department of Electrical and Computer Engineering University of Patras Rion 26504
The manufacturing industry faces currently and in the near future due to the information society, very important challenges. New data, network, automation, digital customer interfaces and many new advancements have br... 详细信息
来源: 评论
3D Hierarchical Refinement and Augmentation for Unsupervised Learning of Depth and Pose from Monocular Video
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Guangming Zhong, Jiquan Zhao, Shijie Wu, Wenhua Liu, Zhe Wang, Hesheng Department of Automation Institute of Medical Robotics Key Laboratory of System Control and Information Processing Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai200240 China Department of Engineering Mechanics Shanghai Jiao Tong University Shanghai200240 China Department of Computer Science and Technology University of Cambridge CambridgeCB2 1TN United Kingdom
Depth and ego-motion estimations are essential for the localization and navigation of autonomous robots and autonomous driving. Recent studies make it possible to learn the per-pixel depth and ego-motion from the unla... 详细信息
来源: 评论
In-flight positional and energy use data set of a DJI matrice 100 quadcopter for small package delivery
arXiv
收藏 引用
arXiv 2021年
作者: Rodrigues, Thiago A. Patrikar, Jay Choudhry, Arnav Feldgoise, Jacob Arcot, Vaibhav Gahlaut, Aradhana Lau, Sophia Moon, Brady Wagner, Bastian Matthews, H. Scott Scherer, Sebastian Samaras, Constantine Department of Civil and Environmental Engineering Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh15213 United States Dietrich College of Humanities and Social Sciences Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States General Robotics Automation Sensing and Perception Laboratory University of Pennsylvania PhiladelphiaPA19104 United States Department of Electrical and Computer Engineering Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States Ravensburg Germany
We autonomously direct a small quadcopter package delivery Uncrewed Aerial Vehicle (UAV) or "drone" to take off, fly a specified route, and land for a total of 209 flights while varying a set of operational ... 详细信息
来源: 评论
A Filtering Approach Based on MMAE for a SINS/CNS Integrated Navigation System
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2018年 第6期5卷 1113-1120页
作者: Fangfang Zhao Cuiqiao Chen Wei He Shuzhi Sam Ge School of Computer Science and Engineering and Center for RoboticsUniversity of Electronic Science and Technology of ChinaChengdu 611731China School of Automation and Electrical Engineering University of Science and Technology of BeijingBeijing 100083China Social Robotics Laboratory Interactive Digital Media Instituteand Department of Electrical and Computer EngineeringNational University of SingaporeSingapore 117576Singapore Singapore 117576 Singapore
This paper explores multiple model adaptive estimation(MMAE) method, and with it, proposes a novel filtering algorithm. The proposed algorithm is an improved Kalman filter— multiple model adaptive estimation unscente... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
LMS-Net: A learned Mumford-Shah network for binary few-shot medical image segmentation
收藏 引用
Medical image analysis 2025年 105卷
作者: Shengdong Zhang Fan Jia Xiang Li Hao Zhang Jun Shi Liyan Ma Shihui Ying Department of Mathematics School of Science Shanghai University Shanghai 200444 China. Department of Mathematics and Scientific Computing and Imaging (SCI) Institute University of Utah Salt Lake City 84102 UT USA. School of Computer Science and Technology East China Normal University Shanghai 200444 China. School of Communication and Information Engineering Shanghai University Shanghai 200444 China. School of Computer Engineering and Science Shanghai University Shanghai 200444 China School of Mechatronic Engineering and Automation Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai 200444 China. Electronic address: liyanma@***. Shanghai Institute of Applied Mathematics and Mechanics Shanghai 200072 China School of Mechanics and Engineering Science Shanghai University Shanghai 200072 China. Electronic address: shying@***.
Few-shot semantic segmentation (FSS) methods have shown great promise in handling data-scarce scenarios, particularly in medical image segmentation tasks. However, most existing FSS architectures lack sufficient inter... 详细信息
来源: 评论
Anchor-based spatio-temporal attention 3D convolutional networks for dynamic 3D point cloud sequences
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Guangming Chen, Muyao Liu, Hanwen Yang, Yehui Liu, Zhe Wang, Hesheng The Department of Automation Institute of Medical Robotics Key Laboratory of System Control and Information Processing Ministry of Education Key Laboratory of Marine Intelligent Equipment System of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China Beijing Advanced Innovation Center for Intelligent Robots and Systems Beijing Institute of Technology China The Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China The Department of Computer Science and Technology University of Cambridge
With the rapid development of measurwement technology, LiDAR and depth cameras are widely used in the perception of the 3D environment. Recent learning based methods for robot perception most focus on the image or vid... 详细信息
来源: 评论
Challenges and Outlook in Robotic Manipulation of Deformable Objects
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Jihong Cherubini, Andrea Dune, Claire Navarro-Alarcon, David Alambeigi, Farshid Berenson, Dmitry Ficuciello, Fanny Harada, Kensuke Kober, Jens Li, Xiang Pan, Jia Yuan, Wenzhen Gienger, Michael Cognitive Robotics TU Delft Honda Research Institute Europe Netherlands LIRMM Université de Montpellier CNRS 161 Rue Ada Montpellier34090 France COSMER Laboratory EA 7398 Universié de Toulon La Garde83130 France The Hong Kong Polytechnic University Department of Mechanical Engineering Kowloon Hong Kong The University of Texas at Austin Austin United States The University of Michigan Ann ArborMI United States Università degli Studi di Napoli Federico II Napoli80125 Italy The Osaka University Japan The National Institute of AIST Japan Cognitive Robotics TU Delft Netherlands Department of Automation Tsinghua University Beijing China The Department of Computer Science The University of Hong Kong Pok Fu Lam Hong Kong Robotics Institute Carnegie Mellon University PittsburghPA15213 United States Honda Research Institute Europe Offenbach Germany
Deformable object manipulation (DOM) is an emerging research problem in robotics. The ability to manipulate deformable objects endows robots with higher autonomy and promises new applications in the industrial, servic... 详细信息
来源: 评论