咨询与建议

限定检索结果

文献类型

  • 336 篇 会议
  • 301 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 639 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 413 篇 工学
    • 188 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 152 篇 控制科学与工程
    • 79 篇 机械工程
    • 53 篇 电气工程
    • 41 篇 信息与通信工程
    • 37 篇 仪器科学与技术
    • 37 篇 电子科学与技术(可...
    • 23 篇 交通运输工程
    • 22 篇 生物工程
    • 19 篇 化学工程与技术
    • 14 篇 光学工程
    • 14 篇 材料科学与工程(可...
    • 11 篇 冶金工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 动力工程及工程热...
    • 9 篇 航空宇航科学与技...
    • 9 篇 安全科学与工程
  • 239 篇 理学
    • 139 篇 数学
    • 83 篇 系统科学
    • 47 篇 统计学(可授理学、...
    • 37 篇 物理学
    • 31 篇 生物学
    • 17 篇 化学
  • 89 篇 管理学
    • 75 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 15 篇 图书情报与档案管...
  • 16 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 7 篇 法学
  • 6 篇 农学
  • 4 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学
  • 1 篇 历史学

主题

  • 19 篇 control systems
  • 14 篇 automation
  • 13 篇 neural networks
  • 13 篇 intelligent syst...
  • 11 篇 optimization
  • 10 篇 stability analys...
  • 10 篇 robots
  • 10 篇 trajectory
  • 10 篇 training
  • 8 篇 deep learning
  • 8 篇 feature extracti...
  • 8 篇 machine learning
  • 8 篇 stability
  • 8 篇 synchronization
  • 7 篇 reinforcement le...
  • 7 篇 path planning
  • 7 篇 ordinary differe...
  • 7 篇 state estimation
  • 7 篇 linear matrix in...
  • 7 篇 stochastic syste...

机构

  • 95 篇 hubei key labora...
  • 85 篇 school of automa...
  • 55 篇 research institu...
  • 34 篇 qingdao academy ...
  • 30 篇 engineering rese...
  • 28 篇 shanghai artific...
  • 26 篇 heilongjiang pro...
  • 18 篇 ieee
  • 17 篇 state key labora...
  • 15 篇 the state key la...
  • 15 篇 school of automa...
  • 15 篇 state key labora...
  • 13 篇 the state key la...
  • 13 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 12 篇 department of ap...
  • 12 篇 school of inform...
  • 11 篇 school of artifi...
  • 11 篇 school of comput...
  • 11 篇 key laboratory o...

作者

  • 31 篇 fei-yue wang
  • 24 篇 gang xiong
  • 23 篇 lin wei
  • 22 篇 jun hu
  • 18 篇 wang fei-yue
  • 17 篇 min wu
  • 13 篇 wei lin
  • 13 篇 zhu qunxi
  • 12 篇 jinhua she
  • 11 篇 dongyan chen
  • 10 篇 fenghua zhu
  • 10 篇 xiao wang
  • 9 篇 xiuqin shang
  • 9 篇 xisong dong
  • 9 篇 changhe li
  • 9 篇 zhen li
  • 8 篇 li changhe
  • 8 篇 yang shengxiang
  • 8 篇 shengxiang yang
  • 8 篇 sun siqi

语言

  • 601 篇 英文
  • 24 篇 其他
  • 15 篇 中文
检索条件"机构=Laboratory of Complex Systems and Intelligent Science"
639 条 记 录,以下是1-10 订阅
排序:
Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges
收藏 引用
IEEE Transactions on Knowledge and Data Engineering 2025年 第6期37卷 3342-3355页
作者: Zhou, Xiaotian Zehmakan, Ahad N. Zhang, Zhongzhi Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China School of Computing Australian National University CanberraACT2601 Australia Research Institute of Intelligent Complex Systems Fudan University Shanghai200433 China
The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this pape... 详细信息
来源: 评论
ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of Large Language Models in Real-world Scenarios  31
ToolEyes: Fine-Grained Evaluation for Tool Learning Capabili...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Ye, Junjie Li, Guanyu Gao, Songyang Huang, Caishuang Wu, Yilong Li, Sixian Fan, Xiaoran Dou, Shihan Ji, Tao Zhang, Qi Gui, Tao Huang, Xuanjing School of Computer Science Fudan University China Institute of Modern Languages and Linguistics Fudan University China Research Institute of Intelligent Complex Systems Fudan University China Shanghai Key Laboratory of Intelligent Information Processing China Pengcheng Laboratory China
Existing evaluations of tool learning primarily focus on validating the alignment of selected tools (e.g., various APIs) for large language models (LLMs) with expected outcomes. However, these approaches rely on a lim... 详细信息
来源: 评论
Fuzzy-Model-Based Fault-Tolerant Control for Stochastic Re-Entrant Manufacturing systems
收藏 引用
IEEE Transactions on systems, Man, and Cybernetics: systems 2025年 第5期55卷 3542-3556页
作者: Zhang, Kexin Gao, Qing Ding, Steven X. Lu, Jinhu Qiu, Jianbin Guo, Yige Beihang University School of Cyber Science and Technology Beijing100191 China Beihang University School of Automation Science and Electrical Engineering Beijing100191 China Hangzhou Innovation Institute Beihang University Hangzhou310051 China Zhongguancun Laboratory Beijing100095 China Institute for Automatic Control and Complex Systems University of Duisburg-Essen Duisburg47057 Germany Research Institute of Intelligent Control and Systems Harbin Institute of Technology Harbin150001 China Zhongguancun Laboratory Beijing China
This study addresses the problem of guaranteed cost fault-tolerant fuzzy control for multiline re-entrant manufacturing systems (RMSs) against stochastic disturbances and workstation faults. Initially, a nonlinear hyp... 详细信息
来源: 评论
Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition  31
Beyond Boundaries: Learning a Universal Entity Taxonomy acro...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Yang, Yuming Zhao, Wantong Huang, Caishuang Ye, Junjie Wang, Xiao Zheng, Huiyuan Nan, Yang Wang, Yuran Xu, Xueying Huang, Kaixin Zhang, Yunke Gui, Tao Zhang, Qi Huang, Xuanjing School of Computer Science Fudan University China Honor Device Co. Ltd. Institute of Modern Languages and Linguistics Fudan University China Pengcheng Laboratory China Research Institute of Intelligent Complex Systems Fudan University China Shanghai Key Laboratory of Intelligent Information Processing China
Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on... 详细信息
来源: 评论
Finite-Time Consensus of Second-Order Multiagent systems With Input Saturation via Hybrid Sliding-Mode Control
收藏 引用
IEEE Transactions on Automation science and Engineering 2025年 22卷 14623-14632页
作者: Jiang, Xiaowei Jiao, Ranran Li, Bo Zhang, Xianhe Yan, Huaicheng China University of Geosciences School of Automation Wuhan430079 China Ministry of Education Hubei Key Laboratory of Advanced Control and Intelligent Automation of Complex Systems Engineering Research Center of Intelligent Geodetection Technology Wuhan430074 China Ministry of Education Key Laboratory of System Control and Information Processing Shanghai200240 China Anhui University of Finance and Economics School of Finance Bengbu233030 China Hubei Normal University School of Electrical Engineering and Automation Huangshi435002 China Ministry of Education East China University of Science and Technology Key Laboratory of Smart Manufacturing in Energy Chemical Process Shanghai200237 China
This paper addresses the finite-time consensus (FTC) issue for second-order multi-agent systems (MASs) with nonlinear disturbances. To tackle the challenges posed by increasingly complex communication environments, an... 详细信息
来源: 评论
Efficient Algorithms for Minimizing the Kirchhoff Index via Adding Edges
arXiv
收藏 引用
arXiv 2025年
作者: Zhou, Xiaotian Zehmakan, Ahad N. Zhang, Zhongzhi Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Research Institute of Intelligent Complex Systems Fudan University Shanghai200433 China School of Computing Australian National University Canberra Australia
The Kirchhoff index, which is the sum of the resistance distance between every pair of nodes in a network, is a key metric for gauging network performance, where lower values signify enhanced performance. In this pape... 详细信息
来源: 评论
Fine-Tuning the BERT Model to Predict Depression and Anxiety Using Multi-Labeled Twitter Data
Fine-Tuning the BERT Model to Predict Depression and Anxiety...
收藏 引用
Sentiment Analysis and Deep Learning (ICSADL), International Conference on
作者: Lamia Bendebane Zakaria Laboudi Asma Saighi Seif Eddine Bouziane Research Laboratory on Computer Science's Complex Systems (ReLa(CS)2) University of Oum El Bouaghi Algeria Laboratory of Artificial Intelligence and Autonomous Things (LIAOA) University of Oum El Bouaghi Algeria Department of Intelligent Systems Engineering National School of Artificial Intelligence Algiers Algeria
Studying mental health through social media data has become an emerging area of research, notably for the detection of depression and anxiety. In this regard, many researches have been conducted, yielding very satisfa... 详细信息
来源: 评论
Adapting Human Mesh Recovery with Vision-Language Feedback
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Chongyang Huang, Buzhen Zhang, Chengfang Feng, Ziliang Wang, Yangang College of Computer Science Sichuan University Chengdu610065 China Key Laboratory of Measurement and Control of Complex Systems of Engineering Ministry of Education The School of Automation Southeast University Nanjing210096 China Intelligent Policing Key Laboratory of Sichuan Province Sichuan Police College Luzhou646000 China
Human mesh recovery can be approached using either regression-based or optimization-based methods. Regression models achieve high pose accuracy but struggle with model-to-image alignment due to the lack of explicit 2D... 详细信息
来源: 评论
Human-like conceptual representations emerge from language prediction
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Ningyu Zhang, Qi Du, Chao Luo, Qiang Qiu, Xipeng Huang, Xuanjing Zhang, Menghan School of Computer Science Fudan University Shanghai China Institute of Modern Languages and Linguistics Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Shanghai China Research Institute of Intelligent Complex Systems Fudan University Shanghai China Shanghai Collaborative Innovation Center of Intelligent Visual Computing Shanghai China Ministry of Education Key Laboratory of Contemporary Anthropology Fudan University Shanghai China
People acquire concepts through rich physical and social experiences and use them to understand the world. In contrast, large language models (LLMs), trained exclusively through next-token prediction over language dat... 详细信息
来源: 评论
Reinforcement Learning based Constrained Optimal Control: an Interpretable Reward Design
arXiv
收藏 引用
arXiv 2025年
作者: Ni, Jingjie Li, Fangfei Jin, Xin Peng, Xianlun Tang, Yang School of Mathematics East China University of Science and Technology Shanghai200237 China Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education East China University of Science and Technology Shanghai200237 China Research Institute of Intelligent Complex Systems Fudan University Shanghai200433 China
This paper presents an interpretable reward design framework for reinforcement learning based constrained optimal control problems with state and terminal constraints. The problem is formalized within a standard parti... 详细信息
来源: 评论