咨询与建议

限定检索结果

文献类型

  • 263 篇 期刊文献
  • 36 篇 会议
  • 1 册 图书

馆藏范围

  • 300 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 理学
    • 140 篇 物理学
    • 101 篇 数学
    • 69 篇 化学
    • 40 篇 统计学(可授理学、...
    • 13 篇 生物学
    • 11 篇 大气科学
    • 10 篇 天文学
    • 10 篇 系统科学
  • 192 篇 工学
    • 78 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 53 篇 化学工程与技术
    • 42 篇 材料科学与工程(可...
    • 37 篇 电气工程
    • 36 篇 电子科学与技术(可...
    • 35 篇 动力工程及工程热...
    • 27 篇 力学(可授工学、理...
    • 16 篇 冶金工程
    • 13 篇 生物医学工程(可授...
    • 11 篇 生物工程
    • 10 篇 土木工程
    • 9 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 6 篇 航空宇航科学与技...
  • 20 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 9 篇 药学(可授医学、理...
  • 17 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 农学
  • 3 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 19 篇 molecular dynami...
  • 18 篇 machine learning
  • 9 篇 atoms
  • 7 篇 density function...
  • 6 篇 electronic struc...
  • 4 篇 first-principles...
  • 4 篇 computational mo...
  • 4 篇 phase diagrams
  • 4 篇 uncertainty
  • 4 篇 nonlinear
  • 3 篇 thermodynamics
  • 3 篇 phase space meth...
  • 3 篇 forecasting
  • 3 篇 nucleation
  • 2 篇 fuzzy logic
  • 2 篇 phase transition...
  • 2 篇 free energy
  • 2 篇 heat conduction
  • 2 篇 inelastic neutro...
  • 2 篇 deep learning

机构

  • 36 篇 laboratory of co...
  • 21 篇 laboratory of co...
  • 19 篇 laboratory of co...
  • 7 篇 école polytechni...
  • 7 篇 school of mathem...
  • 6 篇 laboratory of co...
  • 5 篇 state key labora...
  • 5 篇 hubei key labora...
  • 5 篇 laboratory of co...
  • 4 篇 department of ma...
  • 4 篇 laboratory of co...
  • 4 篇 laboratory of co...
  • 4 篇 laboratory for c...
  • 4 篇 engineering labo...
  • 4 篇 hydro-atmosphere...
  • 4 篇 intelligent mode...
  • 4 篇 department of ea...
  • 3 篇 school of mathem...
  • 3 篇 division of comp...
  • 3 篇 department of ch...

作者

  • 80 篇 ceriotti michele
  • 18 篇 michele ceriotti
  • 12 篇 grasselli federi...
  • 9 篇 nigam jigyasa
  • 9 篇 cheng bingqing
  • 9 篇 grisafi andrea
  • 9 篇 wilkins david m.
  • 9 篇 fraux guillaume
  • 8 篇 kapil venkat
  • 7 篇 engel edgar a.
  • 7 篇 willatt michael ...
  • 6 篇 loche philip
  • 6 篇 bigi filippo
  • 6 篇 tisi davide
  • 5 篇 chong sanggyu
  • 5 篇 musil félix
  • 5 篇 pegolo paolo
  • 5 篇 rossi mariana
  • 5 篇 huguenin-dumitta...
  • 5 篇 tribello gareth ...

语言

  • 281 篇 英文
  • 15 篇 其他
  • 3 篇 中文
  • 1 篇 俄文
检索条件"机构=Laboratory of Computational Science and Modeling"
300 条 记 录,以下是1-10 订阅
排序:
Adaptive energy reference for machine-learning models of the electronic density of states
收藏 引用
Physical Review Materials 2025年 第1期9卷 013802-013802页
作者: Wei Bin How Sanggyu Chong Federico Grasselli Kevin K. Huguenin-Dumittan Laboratory of Computational Science and Modeling IMX École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland
The electronic density of states (DOS) provides information regarding the distribution of electronic energy levels in a material, and can be used to approximate its optical and electronic properties and therefore guid... 详细信息
来源: 评论
Machine Learning for Online Multiscale Model Reduction for Poroelasticity Problem in Heterogeneous Media
收藏 引用
Lobachevskii Journal of Mathematics 2024年 第11期45卷 5437-5451页
作者: Tyrylgin, A. Bai, H. Yang, Y. Laboratory of Computational Technologies for Modeling Multiphysical and Multiscale Permafrost Processes North-Eastern Federal University Yakutsk 677000 Russian Federation North-Caucasus Center for Mathematical Research North-Caucasus Federal University Stavropol 355017 Russian Federation School of Mathematics and Computational Science Xiangtan University Hunan International Scientific and Technological Innovation Cooperation Base of Computational Science Hunan Xiangtan 411105 China School of Mathematics and Computational Science Xiangtan University National Center for Applied Mathematics in Hunan Hunan Xiangtan 411105 China
In this study, we address the poroelasticity problem in heterogeneous media, which involves a coupled system of equations for fluid pressures and displacements. This problem is crucial in geomechanics for modeling the... 详细信息
来源: 评论
Thermal conductivity of Li3PS4 solid electrolytes with ab initio accuracy
收藏 引用
Physical Review Materials 2024年 第6期8卷 065403-065403页
作者: Davide Tisi Federico Grasselli Lorenzo Gigli Michele Ceriotti Laboratory of Computational Science and Modeling Institut des Matériaux École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland
The vast amount of computational studies on electrical conduction in solid-state electrolytes is not mirrored by comparable efforts addressing thermal conduction, which has been scarcely investigated despite its relev... 详细信息
来源: 评论
Thermodynamics and dielectric response of BaTiO_(3)by data-driven modeling
收藏 引用
npj computational Materials 2022年 第1期8卷 1998-2014页
作者: Lorenzo Gigli Max Veit Michele Kotiuga Giovanni Pizzi Nicola Marzari Michele Ceriotti Laboratory of Computational Science and Modeling(COSMO) Institute of MaterialsÉcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland Theory and Simulation of Materials(THEOS)and National Centre for Computational Design and Discovery of Novel Materials(MARVEL) École Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
modeling ferroelectric materials from first principles is one of the successes of density-functional theory and the driver of much development effort,requiring an accurate description of the electronic processes and t... 详细信息
来源: 评论
modeling the ferroelectric phase transition in barium titanate with DFT accuracy and converged sampling
收藏 引用
Physical Review B 2024年 第2期110卷 024101-024101页
作者: Lorenzo Gigli Alexander Goscinski Michele Ceriotti Gareth A. Tribello Laboratory of Computational Science and Modeling Institut des Matériaux Division of Chemistry and Chemical Engineering Centre for Quantum Materials and Technologies (CQMT) School of Mathematics and Physics
The accurate description of the structural and thermodynamic properties of ferroelectrics has been one of the most remarkable achievements of density functional theory (DFT). However, running large simulation cells wi... 详细信息
来源: 评论
BALLORG: State-of-the-art Image Restoration using Block-augmented Lagrangian and Low-rank Gradients
收藏 引用
IEIE Transactions on Smart Processing and Computing 2023年 第1期12卷 1-8页
作者: Tojo, Laya Devi, Manju Maik, Vivek Gurushankar Department of Electronics and Communication The Oxford College of Engineering Bangalore560068 India Department of Electronics and Communication Engineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu Chennai India Laboratory of Computational Modeling of Drugs Higher Medical and Biological School South Ural State University Chelyabinsk454080 Russia
In this paper, we propose a blind image deblurring algorithm using block-augmented Lagrangian and low-rank priors (BALLORG) as a non-learning method that can give better results without the complexity of learning-base... 详细信息
来源: 评论
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
arXiv
收藏 引用
arXiv 2024年
作者: Bigi, Filippo Langer, Marcel F. Ceriotti, Michele Laboratory of Computational Science and Modeling IMX Ecole Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland
The use of machine learning to estimate the energy of a group of atoms, and the forces that drive them to more stable configurations, have revolutionized the fields of computational chemistry and materials discovery. ... 详细信息
来源: 评论
Adaptive energy reference for machine-learning models of the electronic density of states
arXiv
收藏 引用
arXiv 2024年
作者: How, Wei Bin Chong, Sanggyu Grasselli, Federico Huguenin-Dumittan, Kevin K. Ceriotti, Michele Laboratory of Computational Science and Modeling IMX École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland
The electronic density of states (DOS) provides information regarding the distribution of electronic energy levels in a material, and can be used to approximate its optical and electronic properties and therefore guid... 详细信息
来源: 评论
Prediction rigidities for data-driven chemistry
arXiv
收藏 引用
arXiv 2024年
作者: Chong, Sanggyu Bigi, Filippo Grasselli, Federico Loche, Philip Kellner, Matthias Ceriotti, Michele Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland
The widespread application of machine learning (ML) to the chemical sciences is making it very important to understand how the ML models learn to correlate chemical structures with their properties, and what can be do...
来源: 评论
Efficient SVV stabilized triangular spectral element methods for incompressible flows of high Reynolds numbers
收藏 引用
Advances in Aerodynamics 2022年 第1期4卷 58-77页
作者: Lizhen Chen Tao Tang Chuanju Xu Beijing Computational Science Research Center Beijing100193People’s Republic of China Division of Science and Technology BNU-HKBU United International CollegeZhuhaiGuangdongPeople’s Republic of China Guangdong Provincial Key Laboratory of Computational Science and Material Design Southern University of Science and TechnologyShenzhenPeople’s Republic of China School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific ComputingXiamen UniversityXiamen361005People’s Republic of China
In this paper,we propose a spectral vanishing viscosity method for the triangular spectral element computation of high Reynolds number incompressible *** can be regarded as an extension of a similar stabilization tech... 详细信息
来源: 评论