咨询与建议

限定检索结果

文献类型

  • 1,194 篇 会议
  • 1,167 篇 期刊文献
  • 20 册 图书

馆藏范围

  • 2,381 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,625 篇 工学
    • 911 篇 计算机科学与技术...
    • 806 篇 软件工程
    • 429 篇 控制科学与工程
    • 290 篇 信息与通信工程
    • 232 篇 机械工程
    • 228 篇 电气工程
    • 178 篇 生物工程
    • 141 篇 生物医学工程(可授...
    • 136 篇 电子科学与技术(可...
    • 117 篇 光学工程
    • 87 篇 仪器科学与技术
    • 81 篇 化学工程与技术
    • 71 篇 动力工程及工程热...
    • 50 篇 材料科学与工程(可...
    • 47 篇 交通运输工程
    • 40 篇 建筑学
    • 40 篇 安全科学与工程
    • 37 篇 力学(可授工学、理...
  • 916 篇 理学
    • 498 篇 数学
    • 195 篇 生物学
    • 194 篇 系统科学
    • 183 篇 物理学
    • 142 篇 统计学(可授理学、...
    • 75 篇 化学
  • 372 篇 管理学
    • 255 篇 管理科学与工程(可...
    • 127 篇 图书情报与档案管...
    • 68 篇 工商管理
  • 101 篇 医学
    • 91 篇 临床医学
    • 69 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 37 篇 法学
  • 26 篇 经济学
  • 19 篇 农学
  • 13 篇 教育学
  • 11 篇 艺术学
  • 7 篇 文学
  • 1 篇 军事学

主题

  • 53 篇 feature extracti...
  • 51 篇 automation
  • 43 篇 control systems
  • 37 篇 reinforcement le...
  • 35 篇 neural networks
  • 35 篇 training
  • 34 篇 laboratories
  • 32 篇 optimization
  • 31 篇 machine learning
  • 30 篇 deep learning
  • 30 篇 accuracy
  • 29 篇 image segmentati...
  • 27 篇 computational mo...
  • 27 篇 artificial intel...
  • 27 篇 robustness
  • 25 篇 trajectory
  • 25 篇 mathematical mod...
  • 24 篇 semantics
  • 23 篇 computer science
  • 22 篇 pattern recognit...

机构

  • 74 篇 school of automa...
  • 67 篇 department of au...
  • 57 篇 faculty of infor...
  • 56 篇 national laborat...
  • 51 篇 university of ch...
  • 46 篇 beijing key labo...
  • 46 篇 school of electr...
  • 44 篇 state key labora...
  • 39 篇 school of automa...
  • 37 篇 institute of aut...
  • 35 篇 ieee
  • 34 篇 school of artifi...
  • 31 篇 peng cheng labor...
  • 29 篇 school of comput...
  • 28 篇 school of comput...
  • 28 篇 institutes for r...
  • 27 篇 school of automa...
  • 27 篇 school of inform...
  • 27 篇 state key labora...
  • 26 篇 school of automa...

作者

  • 41 篇 niyato dusit
  • 38 篇 junping du
  • 37 篇 kang jiawen
  • 37 篇 yingmin jia
  • 27 篇 fashan yu
  • 22 篇 fei-yue wang
  • 19 篇 kang li
  • 19 篇 johansson karl h...
  • 19 篇 li kang
  • 18 篇 du hongyang
  • 18 篇 yang tao
  • 17 篇 shi ling
  • 17 篇 yi xinlei
  • 15 篇 du junping
  • 15 篇 jia yingmin
  • 15 篇 derong liu
  • 15 篇 fei minrui
  • 14 篇 li stan z.
  • 14 篇 li xiang
  • 14 篇 xiong zehui

语言

  • 2,049 篇 英文
  • 285 篇 其他
  • 49 篇 中文
检索条件"机构=Laboratory of Computer Science Engineering and Automation"
2381 条 记 录,以下是1561-1570 订阅
排序:
Correction to: Automatic identification of myopic maculopathy related imaging features in optic disc region via machine learning methods
收藏 引用
Journal of translational medicine 2021年 第1期19卷 203页
作者: Yuchen Du Qiuying Chen Ying Fan Jianfeng Zhu Jiangnan He Haidong Zou Dazhen Sun Bowen Xin David Feng Michael Fulham Xiuying Wang Lisheng Wang Xun Xu Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. National Clinical Research Center for Eye Diseases Shanghai 20080 China. Biomedical and Multimedia Information Technology Research Group School of Computer Science The University of Sydney Sydney NSW 2006 Australia. Department of Molecular Imaging Royal Prince Alfred Hospital and the University of Sydney Sydney Australia. Department of Automation The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University (SJTU) 800 Dongchuan RD. Minhang District Shanghai 200240 People's Republic of China. lswang@***. Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention and Treatment Center Shanghai Eye Hospital No. 380 Kangding Road Shanghai 200040 China. drxuxun@***. Department of Ophthalmology Shanghai Key Laboratory of Ocular Fundus Diseases Shanghai Engineering Center for Visual Science and Photo Medicine Shanghai General Hospital SJTU School of Medicine Shanghai China. drxuxun@***. National Clinical Research Center for Eye Diseases Shanghai 20080 China. drxuxun@***.
An amendment to this paper has been published and can be accessed via the original article.
来源: 评论
Model-protected multi-task learning
arXiv
收藏 引用
arXiv 2018年
作者: Liang, Jian Liu, Ziqi Zhou, Jiayu Jiang, Xiaoqian Zhang, Changshui Wang, Fei Department of Automation Tsinghua University State Key Laboratory of Intelligent Technologies and Systems Tsinghua National Laboratory for Information Science and Technology Beijing100084 China Department of Computer Science Xi'an Jiaotong University Xi'an710049 China Department of Computer Science and Engineering Michigan State University East LansingMI48824 United States Department of Biomedical Informatics University of California San Diego San DiegoCA92093 United States Department of Healthcare Policy and Research Weill Cornell Medical College New York CityNY10065 United States
Multi-task learning (MTL) refers to the paradigm of learning multiple related tasks together. In contrast, in single-task learning (STL) each individual task is learned independently. MTL often leads to better trained... 详细信息
来源: 评论
Regularizing output distribution of abstractive chinese social media text summarization for improved semantic consistency
arXiv
收藏 引用
arXiv 2018年
作者: WEI, BINGZHEN REN, XUANCHENG SUN, XU ZHANG, YI CAI, XIAOYAN SU, QI MOE Key Laboratory of Computational Linguistics School of Electronics Engineering and Computer Science Peking University No.5 Yiheyuan Road Beijing100871 China School of Automation Northwestern Polytechnical University Xi'an Shannxi710072 China School of Foreign Languages Peking University No.5 Yiheyuan Road Beijing100871 China
Abstractive text summarization is a highly difficult problem, and the sequence-to-sequence model has shown success in improving the performance on the task. However, the generated summaries are often inconsistent with... 详细信息
来源: 评论
Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the heichole benchmark
arXiv
收藏 引用
arXiv 2021年
作者: Wagner, Martin Müller-Stich, Beat-Peter Kisilenko, Anna Tran, Duc Heger, Patrick Mündermann, Lars Lubotsky, David M. Müller, Benjamin Davitashvili, Tornike Capek, Manuela Reinke, Annika Yu, Tong Vardazaryan, Armine Innocent Nwoye, Chinedu Padoy, Nicolas Liu, Xinyang Lee, Eung-Joo Disch, Constantin Meine, Hans Xia, Tong Jia, Fucang Kondo, Satoshi Reiter, Wolfgang Jin, Yueming Long, Yonghao Jiang, Meirui Dou, Qi Heng, Pheng Ann Twick, Isabell Kirtac, Kadir Hosgor, Enes Bolmgren, Jon Lindström Stenzel, Michael von Siemens, Björn Kenngott, Hannes G. Nickel, Felix von Frankenberg, Moritz Mathis-Ullrich, Franziska Maier-Hein, Lena Speidel, Stefanie Bodenstedt, Sebastian Department for General Visceral and Transplantation Surgery Heidelberg University Hospital Im Neuenheimer Feld 420 Heidelberg69120 Germany Heidelberg Im Neuenheimer Feld 460 Heidelberg69120 Germany Data Assisted Solutions Corporate Research & Technology KARL STORZ SE & Co. KG Dr. Karl-Storz-Str. 34 Tuttlingen78332 Germany Im Neuenheimer Feld 223 Heidelberg69120 Germany Im Neuenheimer Feld 223 Heidelberg69120 Germany Faculty of Mathematics and Computer Science Heidelberg University Im Neuenheimer Feld 205 Heidelberg69120 Germany ICube University of Strasbourg CNRS France 300 bd Sébastien Brant - CS 10413 Illkirch CedexF-67412 France IHU Strasbourg France 1 Place de l'hôpital Strasbourg67000 France Sheikh Zayed Institute for Pediatric Surgical Innovation Children's National Hospital 111 Michigan Ave NW WashingtonDC20010 United States University of Maryland College Park 2405 A V Williams Building College ParkMD20742 United States Fraunhofer Institute for Digital Medicine MEVIS Max-von-Laue-Str. 2 Bremen28359 Germany University of Bremen FB3 Medical Image Computing Group ℅ Fraunhofer MEVIS Am Fallturm 1 Bremen28359 Germany Lab for Medical Imaging and Digital Surgery Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China Konika Minolta Inc. JP TOWER 2-7-2 Marunouchi Chiyoda-ku Tokyo100-7015 Japan Wintegral GmbH Ehrenbreitsteiner Str. 36 München80993 Germany Department of Computer Science and Engineering Ho Sin-Hang Engineering Building The Chinese University of Hong Kong Sha Tin NT Hong Kong Caresyntax GmbH Komturstr. 18A Berlin12099 Germany Department of Surgery Salem Hospital of the Evangelische Stadtmission Heidelberg Zeppelinstrasse 11-33 Heidelberg69121 Germany Health Robotics and Automation Laboratory Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Geb. 40.28 KIT Campus Süd Engler-Bunte-Ring 8 Karlsruhe76131 Germany Medical Faculty Heidelberg Uni
PURPOSE: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive w... 详细信息
来源: 评论
High-frequency oscillations in the atmosphere above a sunspot umbra
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Feng Deng, Hui Bo, L.I. Feng, Song Xianyong, B.A.I. Deng, Linhua Yang, Yunfei Zhike, X.U.E. Wang, Rui School of Physics and Electronic Engineering Guangzhou University Guangzhou510006 China Yunnan Key Laboratory of Computer Technology Application Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming650500 China Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment Institute of Space Sciences Shandong University Weihai264209 China CAS Key Laboratory of Solar Activity National Astronomical Observatories Beijing100012 China Yunnan Observatories Chinese Academy of Sciences Kunming650216 China
We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the ... 详细信息
来源: 评论
Robust visual tracking using multi-frame multi-feature joint modeling
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Peng Yu, Shujian Xu, Jiamiao You, Xinge Jiang, Xiubao Jing, Xiao-Yuan Tao, Dacheng School of Electronic Information and Communications Huazhong University of Science and Technology Wuhan Hubei China Department of Electrical and Computer Engineering University of Florida GainesvilleFL32611 United States State Key Laboratory of Software Engineering School of Computer Wuhan University Wuhan430072 China School of Automation Nanjing University of Posts and Telecommunications Nanjing210023 China UBTech Sydney Artificial Intelligence Institute and the School of Information Technologies Faculty of Engineering and Information Technologies at the University of Sydney DarlingtonNSW2008 Australia
It remains a huge challenge to design effective and efficient trackers under complex scenarios, including occlusions, illumination changes and pose variations. To cope with this problem, a promising solution is to int... 详细信息
来源: 评论
An efficient privacy-preserving palmprint authentication scheme based on homomorphic encryption  9th
An efficient privacy-preserving palmprint authentication sch...
收藏 引用
9th International Symposium on Cyberspace Safety and Security, CSS 2017
作者: Wang, Huiyong Ding, Yong Tang, Shijie Wang, Jilin School of Mathematics and Computing Science Guilin University of Electronics Technology GuilinGuangxi China Guangxi Key Laboratory of Cryptography and Information Security School of Computer Science and Information Security Guilin University of Electronics Technology GuilinGuangxi China Guangxi Key Laboratory of Intelligent Integrated Automation School of Electronic Engineering and Automation Guilin University of Electronics Technology GuilinGuangxi China Information School Zhejiang University of Finance and Economics HangzhouZhejiang China
In order to provide protection for biometric features in palmprint authentication, we propose a palmprint authentication scheme suitable for personal environments with privacy-preserving trait using the ElGamal encryp... 详细信息
来源: 评论
Deep crisp boundaries: From boundaries to higher-level tasks
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Yupei Zhao, Xin Li, Yin Huang, Kaiqi Center for Research on Intelligent System and Engineering Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Department of Biostatistics and Medical Informatics Department of Computer Sciences Univeristy of Wisconsin-Madison Center for Research on Intelligent System and Engineering National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China CAS Center for Excellence in Brain Science and Intelligence Technology 100190
Edge detection has made significant progress with the help of deep Convolutional Networks (ConvNet). These ConvNet based edge detectors have approached human level performance on standard benchmarks. We provide a syst... 详细信息
来源: 评论
WSN Architecture Design Based on Software Defined Networks
WSN Architecture Design Based on Software Defined Networks
收藏 引用
The 2nd International Conference on Automatic Control and Information engineering(ICACIE 2017)
作者: Tian He Zhao Hai Shao Shi-liang Engineering Practice Center Liaoning institute of Science and Technology School of Computer Science and Engineering Northeastern University Robotics Laboratory Shenyang Institute of Automation Chinese Academy of Sciences
In order to improve the performance of wireless sensor networks and adapt the development of network technology, proposed a software defined wireless sensor network model which had hierarchy architecture and based on ... 详细信息
来源: 评论
Enhanced CNN for image denoising
arXiv
收藏 引用
arXiv 2018年
作者: Tian, Chunwei Xu, Yong Fei, Lunke Wang, Junqian Wen, Jie Luo, Nan Bio-Computing Research Center Harbin Institute of Technology Shenzhen Shenzhen518055 China Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory Harbin Institute of Technology Shenzhen Shenzhen518055 China School of Computer Science and Technology Guangdong University of Technology Guangzhou510006 China Institute of Automation Heilongjiang Academy of Sciences Harbin150090 China
Owing to the flexible architectures of deep convolutional neural networks (CNNs) are successfully used for image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very diff... 详细信息
来源: 评论