咨询与建议

限定检索结果

文献类型

  • 1,196 篇 期刊文献
  • 1,195 篇 会议
  • 21 册 图书

馆藏范围

  • 2,412 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,658 篇 工学
    • 929 篇 计算机科学与技术...
    • 814 篇 软件工程
    • 444 篇 控制科学与工程
    • 297 篇 信息与通信工程
    • 242 篇 电气工程
    • 232 篇 机械工程
    • 180 篇 生物工程
    • 144 篇 生物医学工程(可授...
    • 138 篇 电子科学与技术(可...
    • 119 篇 光学工程
    • 86 篇 仪器科学与技术
    • 84 篇 化学工程与技术
    • 73 篇 动力工程及工程热...
    • 53 篇 材料科学与工程(可...
    • 49 篇 交通运输工程
    • 41 篇 安全科学与工程
    • 38 篇 建筑学
    • 37 篇 力学(可授工学、理...
  • 926 篇 理学
    • 500 篇 数学
    • 196 篇 生物学
    • 194 篇 系统科学
    • 185 篇 物理学
    • 144 篇 统计学(可授理学、...
    • 78 篇 化学
  • 379 篇 管理学
    • 261 篇 管理科学与工程(可...
    • 129 篇 图书情报与档案管...
    • 67 篇 工商管理
  • 101 篇 医学
    • 92 篇 临床医学
    • 69 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 36 篇 法学
  • 26 篇 经济学
  • 19 篇 农学
  • 13 篇 教育学
  • 11 篇 艺术学
  • 7 篇 文学
  • 1 篇 军事学

主题

  • 52 篇 feature extracti...
  • 51 篇 automation
  • 44 篇 control systems
  • 37 篇 reinforcement le...
  • 35 篇 neural networks
  • 34 篇 laboratories
  • 34 篇 training
  • 33 篇 deep learning
  • 32 篇 optimization
  • 31 篇 machine learning
  • 30 篇 accuracy
  • 28 篇 image segmentati...
  • 28 篇 artificial intel...
  • 27 篇 robustness
  • 26 篇 computational mo...
  • 25 篇 trajectory
  • 25 篇 mathematical mod...
  • 23 篇 computer science
  • 23 篇 semantics
  • 22 篇 pattern recognit...

机构

  • 73 篇 school of automa...
  • 69 篇 department of au...
  • 57 篇 faculty of infor...
  • 56 篇 national laborat...
  • 49 篇 university of ch...
  • 47 篇 school of electr...
  • 46 篇 beijing key labo...
  • 45 篇 state key labora...
  • 40 篇 school of automa...
  • 36 篇 institute of aut...
  • 35 篇 ieee
  • 33 篇 school of artifi...
  • 32 篇 peng cheng labor...
  • 30 篇 school of comput...
  • 28 篇 school of comput...
  • 27 篇 school of automa...
  • 27 篇 institutes for r...
  • 27 篇 school of inform...
  • 27 篇 state key labora...
  • 26 篇 school of automa...

作者

  • 42 篇 niyato dusit
  • 38 篇 junping du
  • 38 篇 kang jiawen
  • 37 篇 yingmin jia
  • 27 篇 fashan yu
  • 23 篇 fei-yue wang
  • 20 篇 li kang
  • 19 篇 kang li
  • 19 篇 johansson karl h...
  • 18 篇 shi ling
  • 18 篇 du hongyang
  • 18 篇 yang tao
  • 17 篇 derong liu
  • 17 篇 yi xinlei
  • 15 篇 du junping
  • 15 篇 jia yingmin
  • 15 篇 fei minrui
  • 14 篇 shen tao
  • 14 篇 li stan z.
  • 14 篇 li xiang

语言

  • 2,211 篇 英文
  • 152 篇 其他
  • 52 篇 中文
检索条件"机构=Laboratory of Computer Science Engineering and Automation"
2412 条 记 录,以下是551-560 订阅
排序:
A Battery Capacity Prediction Method Applying to On-Service Vehicles Using Charging Data and Decomposition Framework
SSRN
收藏 引用
SSRN 2024年
作者: Zhao, Xinwei Liu, Yonggui Xiao, Bin Key Laboratory of Autonomous Systems and Network Control Ministry of Education School of Automation Science and Engineering South China University of Technology Guangzhou510641 China School of Computer Science and Technology Guangdong University of Technology Guangzhou510006 China Information Engineering School Guangzhou Vocational College of Technology & Business Guangzhou511442 China
Lithium-ion batteries are valuable as the primary power source for electric vehicles (EVs). However, their capacity degradation and reliability directly affect driving of on-service EVs, accurately forecasting battery... 详细信息
来源: 评论
Navigating the future:Embracing resilience and interoperability in the industrial internet
收藏 引用
Fundamental Research 2024年 第1期4卷 1-2页
作者: Chaojie Gu Chunxiao Jiang Jiming Chen Yang Cong Bin Xiao College of Control Science and Engineering Zhejiang UniversityHangzhou 310027China Beijing National Research Center for Information Science and Technology Tsinghua UniversityBeijing 100084China School of Automation Science and Engineering South China University of TechnologyGuangzhou 510641China Division II Department of Information SciencesNational Natural Science Foundation of ChinaBeijing 100085China Chongqing Key Laboratory of Image Cognition School of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing 400065China
In the midst of the fourth industrial revolution,the convergence of the digital,physical,and biological realms is propelling industrial innovation to new *** the heart of this transformative era lies the Industrial In... 详细信息
来源: 评论
MIHCGENER: A Framework for Multiple Immunohistochemical Image Generation Based on the Combination of Pathological Foundation Model and Generative Model  22
MIHCGENER: A Framework for Multiple Immunohistochemical Imag...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Xun, Tianwang Li, Ruiyu Su, Lei Wu, Junxian Dong, Di Shang, Wenting Shao, Lizhi Institute of Automation Chinese Academy of Sciences Cas Key Laboratory of Molecular Imaging Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Peking Union Medical College Hospital Molecular Pathology Research Center Beijing China School of Computer Science and Engineering Southeast University Nanjing China School of Internet Anhui University Anhui China
The tumor microenvironment (TME) is important to the treatment and prognosis of cancer. Multiplex Immunohistochemical (mIHC) images can display the expression of multiple biomolecular markers while maintaining spatial... 详细信息
来源: 评论
Federated Learning-Empowered AI-Generated Content in Wireless Networks
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Xumin Li, Peichun Du, Hongyang Kang, Jiawen Niyato, Dusit Kim, Dong In Wu, Yuan State Key Laboratory of Internet of Things for Smart City University of Macau Taipa China The School of Computer Science and Engineering Nanyang Technological University Singapore School of Automation Guangdong University of Technology Guangzhou510006 China The Department of Electrical and Computer Engineering Sungkyunkwan University Suwon16419 Korea Republic of Department of Computer and Information Science University of Macau Taipa China
Artificial intelligence generated content (AIGC) has emerged as a promising technology to improve the efficiency, quality, diversity and flexibility of the content creation process by adopting a variety of generative ... 详细信息
来源: 评论
DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing
DeepRicci: Self-supervised Graph Structure-Feature Co-Refine...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Li Sun Zhenhao Huang Hua Wu Junda Ye Hao Peng Zhengtao Yu Philip S. Yu School of Control and Computer Engineering North China Electric Power University Beijing China School of Computer Science Beijing University of Posts and Telecommunications Beijing China State Key Laboratory of Software Development Environment Beihang University Beijing China Faculty of Information Engineering and Automation Kunming University of Science and Technology Kunming China Department of Computer Science University of Illinois at Chicago IL USA
Graph Neural Networks (GNNs) have shown great power for learning and mining on graphs, and Graph Structure Learning (GSL) plays an important role in boosting GNNs with a refined graph. In the literature, most GSL solu...
来源: 评论
Create Your World: Lifelong Text-to-Image Diffusion
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Gan Liang, Wenqi Dong, Jiahua Li, Jun Ding, Zhengming Cong, Yang State Key Laboratory of Robotics Shenyang Institute of Automation Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110016 China The School of Computer Science and Engineering Nanjing University of Science and Technology Jiangsu210094 China The Department of Computer Science Tulane University New OrleansLA70118 United States The College of Automation Science and Engineering South China University of Technology Guangzhou510640 China University of Chinese Academy of Sciences Beijing100049 China
Text-to-image generative models can produce diverse high-quality images of concepts with a text prompt, which have demonstrated excellent ability in image generation, image translation, etc. We in this work study the ... 详细信息
来源: 评论
ALIM: adjusting label importance mechanism for noisy partial label learning  23
ALIM: adjusting label importance mechanism for noisy partial...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Mingyu Xu Zheng Lian Lei Feng Bin Liu Jianhua Tao The State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences and School of Artificial Intelligence University of Chinese Academy of Sciences The State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences School of Computer Science and Engineering Nanyang Technological University Department of Automation Tsinghua University and Beijing National Research Center for Information Science and Technology Tsinghua University
Noisy partial label learning (noisy PLL) is an important branch of weakly supervised learning. Unlike PLL where the ground-truth label must conceal in the candidate label set, noisy PLL relaxes this constraint and all...
来源: 评论
Data-Driven Output Containment Control of Heterogeneous Multiagent Systems: A Hierarchical Scheme
Data-Driven Output Containment Control of Heterogeneous Mult...
收藏 引用
IEEE Conference on Decision and Control
作者: Malika Sader Wenyu Li Yanhui Yin Zhongmei Li Dexian Huang Zhongxin Liu Xiao He Chao Shang Department of Automation Tsinghua University Beijing China College of Artificial Intelligence Tianjin Key Laboratory of Interventional Brain-Computer Interface and Intelligent Rehabilitation Nankai University Tianjin China School of Automation Engineering North-East Electric Power University Jilin China Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education East China University of Science and Technology Shanghai China Department of Automation Beijing National Research Center for Information Science and Technology Tsinghua University Beijing China
In this article, we propose a data-driven solution to the output containment control problem of multiagent systems characterized by heterogeneous and unknown dynamics. The proposed data-driven scheme is hierarchical, ... 详细信息
来源: 评论
Neural Network-Based Dimensionality Reduction for Large-Scale Binary Optimization With Millions of Variables
收藏 引用
IEEE Transactions on Evolutionary Computation 2024年 1-1页
作者: Tian, Ye Wang, Luchen Yang, Shangshang Ding, Jinliang Jin, Yaochu Zhang, Xingyi School of Computer Science and Technology Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui University Hefei China Institutes of Physical Science and Information Technology Anhui University Hefei China School of Artificial Intelligence Anhui University Hefei China State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang China School of Engineering Westlake University Hangzhou China
Binary optimization assumes a pervasive significance in the context of practical applications, such as knapsack problems, maximum cut problems, and critical node detection problems. Existing techniques including mathe... 详细信息
来源: 评论
DUSA-UNet: Dual Sparse Attentive U-Net for Multiscale Road Network Extraction
收藏 引用
IEEE Transactions on Geoscience and Remote Sensing 2025年 63卷
作者: Song, Jie Sun, Yue Cai, Ziyun Xiao, Liang Huang, Yawen Zheng, Yefeng Nanjing University of Posts and Telecommunications College of Automation College of Artificial Intelligence Nanjing210023 China Nanjing University of Science and Technology School of Computer Science and Engineering Nanjing210094 China Nanjing University of Science and Technology Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Nanjing210094 China Nanjing University of Science and Technology Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense Nanjing210094 China Tencent YouTu Lab Jarvis Research Center Shenzhen518057 China
The challenges of road network segmentation demand an algorithm capable of adapting to the sparse and irregular shapes, as well as the diverse context, which often leads traditional encoding-decoding methods and simpl... 详细信息
来源: 评论