In this paper, a hollow-core anti-resonant optical fibre containing a semi-elliptical nested tube is proposed, which has the characteristics of single-polarization, large bandwidth, single-mode and low confinement los...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
The field of three-dimensional reconstruction plays a pivotal role across diverse domains such as computer graphics, virtual reality, robotics, archaeology, and medical imaging. This paper presents a novel deep learni...
详细信息
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of th...
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of the deep learning models, i.e., neural architectures with parameters trained over a dataset, is crucial to our daily living and economy.
Quadrotors play a significant role in our lives and are transforming our *** cable-suspended loads is an unavoidable quadrotor application trend and a hot research topic in the control ***,the load swing and unpredict...
详细信息
Quadrotors play a significant role in our lives and are transforming our *** cable-suspended loads is an unavoidable quadrotor application trend and a hot research topic in the control ***,the load swing and unpredictability pose significant challenges to the quadrotor's *** this paper,an anti-swing controller with an inner-outer control strategy for the quadrotor-slung load transportation system is *** facilitate the controller design,the outer position dynamics are restructured in the form of ***,a virtual controller is created to force the underactuated states to the dynamic surface to ensure the position subsystem's *** improve robustness,an adaptive law is used to eliminate the effects of uncertain cable ***,a dynamic surface controller for the inner attitude subsystem is presented to drive the actual force to the virtual *** is demonstrated that the control strategy can stabilize the quadrotor despite mass and cable length *** results are provided to demonstrate the efficacy and durability of the proposed method.
For permanent magnet synchronous machines(PMSMs),accurate inductance is critical for control design and condition *** to magnetic saturation,existing methods require nonlinear saturation model and measurements from mu...
详细信息
For permanent magnet synchronous machines(PMSMs),accurate inductance is critical for control design and condition *** to magnetic saturation,existing methods require nonlinear saturation model and measurements from multiple load/current conditions,and the estimation is relying on the accuracy of saturation model and other machine parameters in the *** harmonic produced by harmonic currents is inductance-dependent,and thus this paper explores the use of magnitude and phase angle of the speed harmonic for accurate inductance *** estimation models are built based on either the magnitude or phase angle,and the inductances can be from d-axis voltage and the magnitude or phase angle,in which the filter influence in harmonic extraction is considered to ensure the estimation *** inductances can be estimated from the measurements under one load condition,which is free of saturation ***,the inductance estimation is robust to the change of other machine *** proposed approach can effectively improve estimation accuracy especially under the condition with low current *** and comparisons are conducted on a test PMSM to validate the proposed approach.
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous *** the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous...
详细信息
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous *** the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems.
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature ***,the existing deep learningbased NE methods are time-consuming as they need to train a dense...
详细信息
Network embedding(NE)tries to learn the potential properties of complex networks represented in a low-dimensional feature ***,the existing deep learningbased NE methods are time-consuming as they need to train a dense architecture for deep neural networks with extensive unknown weight parameters.A sparse deep autoencoder(called SPDNE)for dynamic NE is proposed,aiming to learn the network structures while preserving the node evolution with a low computational *** tries to use an optimal sparse architecture to replace the fully connected architecture in the deep autoencoder while maintaining the performance of these models in the dynamic ***,an adaptive simulated algorithm to find the optimal sparse architecture for the deep autoencoder is *** performance of SPDNE over three dynamical NE models(*** architecture-based deep autoencoder method,DynGEM,and ElvDNE)is evaluated on three well-known benchmark networks and five real-world *** experimental results demonstrate that SPDNE can reduce about 70%of weight parameters of the architecture for the deep autoencoder during the training process while preserving the performance of these dynamical NE *** results also show that SPDNE achieves the highest accuracy on 72 out of 96 edge prediction and network reconstruction tasks compared with the state-of-the-art dynamical NE algorithms.
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriv...
详细信息
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the ***,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of *** this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected *** authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE *** the authors turn to multi-player models,where there exists one player adopting an equalizer ZD *** authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE ***,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.
Depth information can benefit various computer vision tasks on both images and ***,depth maps may suffer from invalid values in many pixels,and also large *** improve such data,we propose a joint self-supervised and r...
详细信息
Depth information can benefit various computer vision tasks on both images and ***,depth maps may suffer from invalid values in many pixels,and also large *** improve such data,we propose a joint self-supervised and reference-guided learning approach for depth *** the self-supervised learning strategy,we introduce an improved spatial convolutional sparse coding module in which total variation regularization is employed to enhance the structural information while preserving edge *** module alternately learns a convolutional dictionary and sparse coding from a corrupted depth ***,both the learned convolutional dictionary and sparse coding are convolved to yield an initial depth map,which is effectively smoothed using local contextual *** reference-guided learning part is inspired by the fact that adjacent pixels with close colors in the RGB image tend to have similar depth *** thus construct a hierarchical joint bilateral filter module using the corresponding color image to fill in large *** summary,our approach integrates a convolutional sparse coding module to preserve local contextual information and a hierarchical joint bilateral filter module for filling using specific adjacent *** results show that the proposed approach works well for both invalid value restoration and large hole inpainting.
暂无评论