咨询与建议

限定检索结果

文献类型

  • 120 篇 期刊文献
  • 33 篇 会议

馆藏范围

  • 153 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 107 篇 工学
    • 70 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 29 篇 生物工程
    • 17 篇 生物医学工程(可授...
    • 15 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 13 篇 光学工程
    • 13 篇 电气工程
    • 11 篇 化学工程与技术
    • 6 篇 建筑学
    • 5 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
  • 84 篇 理学
    • 37 篇 数学
    • 32 篇 生物学
    • 23 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
    • 5 篇 地球物理学
    • 4 篇 大气科学
  • 28 篇 管理学
    • 16 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 17 篇 医学
    • 14 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 9 篇 公共卫生与预防医...
    • 5 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 经济学
  • 2 篇 法学

主题

  • 10 篇 machine learning
  • 7 篇 feature extracti...
  • 6 篇 image segmentati...
  • 5 篇 deep learning
  • 4 篇 surveys
  • 4 篇 data mining
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 deep neural netw...
  • 3 篇 convolution
  • 3 篇 contrastive lear...
  • 3 篇 large language m...
  • 3 篇 semantics
  • 3 篇 artificial intel...
  • 3 篇 diseases
  • 3 篇 data models
  • 2 篇 galaxies
  • 2 篇 recommender syst...
  • 2 篇 manuals

机构

  • 26 篇 center for data ...
  • 18 篇 center for machi...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 department of st...
  • 9 篇 national enginee...
  • 9 篇 beijing internat...
  • 8 篇 peking universit...
  • 8 篇 school of comput...
  • 7 篇 national biomedi...
  • 7 篇 national key lab...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 5 篇 lab crestview ra...
  • 5 篇 university of pe...
  • 5 篇 helmholtz ai hel...
  • 5 篇 peking universit...
  • 5 篇 department of ne...
  • 4 篇 sage bionetworks...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 wang liwei
  • 9 篇 li zhang
  • 9 篇 bin dong
  • 7 篇 jie zhao
  • 7 篇 zifan chen
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 xia yong
  • 6 篇 xie yutong
  • 5 篇 bakas spyridon
  • 5 篇 wang chunhao
  • 5 篇 kazerooni anahit...
  • 5 篇 haoshen li
  • 5 篇 chung verena
  • 5 篇 kofler florian
  • 5 篇 guizani mohsen

语言

  • 142 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Laboratory of Data Science and Machine Learning"
153 条 记 录,以下是111-120 订阅
排序:
Reducing Training data Needs with Minimal Multilevel machine learning (M3L)
arXiv
收藏 引用
arXiv 2023年
作者: Heinen, Stefan Khan, Danish von Rudorff, Guido Falk Karandashev, Konstantin Arrieta, Daniel Jose Arismendi Price, Alastair J.A. Nandi, Surajit Bhowmik, Arghya Hermansson, Kersti Anatole von Lilienfeld, O. Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry University of Toronto St. George Campus TorontoON Canada University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria Department of Chemistry-Ångström Laboratory Uppsala University Box 538 UppsalaSE-75121 Sweden Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Departments of Chemistry University of Toronto St. George Campus TorontoON Canada Department of Energy Conversion and Storage DTU Anker Engelunds Vej Kgs. LyngbyDK-2800 Denmark Department of Materials Science and Engineering University of Toronto St. George campus TorontoON Canada Department of Physics University of Toronto St. George campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin Germany
For many machine learning applications in science, data acquisition, not training, is the bottleneck even when avoiding experiments and relying on computation and simulation. Correspondingly, and in order to reduce co... 详细信息
来源: 评论
Depth selection for deep ReLU nets in feature extraction and generalization
arXiv
收藏 引用
arXiv 2020年
作者: Han, Zhi Yu, Siquan Lin, Shao-Bo Zhou, Ding-Xuan State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China School of Information Science and Engineering Northeastern University Shenyang China Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China School of Data Science Department of Mathematics City University of Hong Kong Hong Kong
Deep learning is recognized to be capable of discovering deep features for representation learning and pattern recognition without requiring elegant feature engineering techniques by taking advantage of human ingenuit... 详细信息
来源: 评论
Optimal Neural Summarisation for Full-Field Weak Lensing Cosmological Implicit Inference
arXiv
收藏 引用
arXiv 2024年
作者: Lanzieri, Denise Zeghal, Justine Makinen, T. Lucas Boucaud, Alexandre Starck, Jean-Luc Lanusse, François Université Paris Cité Université Paris-Saclay CEA CNRS AIM Gif-sur-YvetteF-91191 France Université Paris Cité CNRS Astroparticule et Cosmologie ParisF-75013 France Astrophysics Group Imperial College London Blackett Laboratory Prince Consort Road LondonSW7 2AZ United Kingdom Université Paris-Saclay Université Paris Cité CEA CNRS AIM Gif-sur-Yvette91191 France Sony Computer Science Laboratories - Rome Joint Initiative CREF-SONY Centro Ricerche Enrico Fermi Via Panisperna 89/A Rome00184 Italy Greece Center for Computational Astrophysics Flatiron Institute 162 5th Ave New YorkNY10010 United States Department of Physics Université de Montréal MontréalH2V 0B3 Canada Mila – Quebec Artificial Intelligence Institute MontréalH2S 3H1 Canada Ciela – Montreal Institute for Astrophysical Data Analysis and Machine Learning MontréalH2V 0B3 Canada
Context. Traditionally, weak lensing cosmological surveys have been analyzed using summary statistics that were either motivated by their analytically tractable likelihoods (e.g. power spectrum), or by their ability t... 详细信息
来源: 评论
The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023
arXiv
收藏 引用
arXiv 2024年
作者: Lyu, Jun Qin, Chen Wang, Shuo Wang, Fanwen Li, Yan Wang, Zi Guo, Kunyuan Ouyang, Cheng Tänzer, Michael Liu, Meng Sun, Longyu Sun, Mengting Li, Qin Shi, Zhang Hua, Sha Li, Hao Chen, Zhensen Zhang, Zhenlin Xin, Bingyu Metaxas, Dimitris N. Yiasemis, George Teuwen, Jonas Zhang, Liping Chen, Weitian Pang, Yanwei Liu, Xiaohan Razumov, Artem Dylov, Dmitry V. Dou, Quan Yan, Kang Xue, Yuyang Du, Yuning Dietlmeier, Julia Garcia-Cabrera, Carles Hemidi, Ziad Al-Haj Vogt, Nora Xu, Ziqiang Zhang, Yajing Chu, Ying-Hua Chen, Weibo Bai, Wenjia Zhuang, Xiahai Qin, Jing Wu, Lianmin Yang, Guang Qu, Xiaobo Wang, He Wang, Chengyan Psychiatry Neuroimaging Laboratory Brigham and Women’s Hospital Harvard Medical School 399 Revolution Drive BostonMA02215 United States Department of Electrical and Electronic Engineering & I-X Imperial College London United Kingdom Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai China Department of Bioengineering & I-X Imperial College London LondonW12 7SL United Kingdom Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital Guy’s and St Thomas’ NHS Foundation Trust LondonSW3 6NP United Kingdom Department of Radiology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China Department of Electronic Science Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Institute of Artificial Intelligence Xiamen University Xiamen361102 China Department of Computing Department of Brain Sciences Imperial College London LondonSW7 2AZ United Kingdom Human Phenome Institute Fudan University 825 Zhangheng Road Pudong New District Shanghai201203 China Department of Radiology Zhongshan Hospital Fudan University Shanghai China Department of Cardiovascular Medicine Ruijin Hospital Lu Wan Branch Shanghai Jiao Tong University School of Medicine Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai200433 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States AI for Oncology Netherlands Cancer Institute Plesmanlaan 121 Amsterdam1066 CX Netherlands Department of Imaging and Interventional Radiology The Chinese University of Hong Kong Hong Kong TJK-BIIT Lab School of Electrical and Information Engineering Tianjin University Tianjin300072 China Skolkovo Institute Of Science And Technology Center for Artificial Intelligence Technology 30/1 Bolshoy blvd. Moscow121205 Russia Department of Biomedical Engineering University of Virginia
Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow i... 详细信息
来源: 评论
A multi-objective deep reinforcement learning algorithm for spatio-temporal latency optimization in mobile IoT-enabled edge computing networks
收藏 引用
Simulation Modelling Practice and Theory 2025年 143卷
作者: Parisa Khoshvaght Amir Haider Amir Masoud Rahmani Farhad Soleimanian Gharehchopogh Ferzat Anka Jan Lansky Mehdi Hosseinzadeh Institute of Research and Development Duy Tan University Da Nang Vietnam School of Engineering & Technology Duy Tan University Da Nang Vietnam Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Rajpura 140401 Punjab India Department of AI and Robotics Sejong University Seoul 05006 Republic of Korea Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering Ur. C. Islamic Azad University Urmia Iran Data Science Application and Research Center (VEBIM) Fatih Sultan Mehmet Vakif University Istanbul Türkiye Department of Computer Science and Mathematics Faculty of Economic Studies University of Finance and Administration Prague Czech Republic Pattern Recognition and Machine Learning Laboratory School of Computing Gachon University Seongnam Republic of Korea
The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (ME...
来源: 评论
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
VulnerVAN: A Vulnerable Network Generation Tool
VulnerVAN: A Vulnerable Network Generation Tool
收藏 引用
MILCOM, Military Communications Conference
作者: Sridhar Venkatesan Jason A. Youzwak Shridatt Sugrim Cho-Yu J. Chiang Alexander Poylisher Matthew Witkowski Gary Walther Michelle Wolberg Ritu Chadha E. Allison Newcomb Blaine Hoffman Norbou Buchler Machine Learning and Data Analytics Research Perspecta Labs Inc. Basking Ridge NJ USA Computational and Information Science Directorate U.S. CCDC Army Research Laboratory Aberdeen MD USA Human Research and Engineering Directorate U.S. CCDC Army Research Laboratory
Cyber training, security testing, and research and development activities are vital to improve the security posture of a network. Currently, many institutions use cyber security testbeds to conduct these activities in... 详细信息
来源: 评论
DeePMD-kit v2: A software package for Deep Potential models
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li'ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E.A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. Weinan, E. Car, Roberto Zhang, Linfeng Wang, Han Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China College of Electrical and Information Engineering Hunan University Changsha China Yuanpei College Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Department of Experimental Physics Comenius University Mlynská Dolina F2 Bratislava842 48 Slovakia Center for Quantum Information Institute for Interdisciplinary Information Sciences Tsinghua University Beijing100084 China Center for Data Science Peking University Beijing100871 China ByteDance Research Zhonghang Plaza No. 43 North 3rd Ring West Road Haidian District Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Baidu Inc. Beijing China Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University Zhejiang Hangzhou China Westlake AI Therapeutics Lab Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Hangzhou China Department of Chemistry Princeton University PrincetonNJ08544 United States SISSA Scuola Internazionale Superiore di Studi Avanzati Trieste34136 Italy Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Department of Physics National University of Defense Technology Hunan Changsha410073 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China School of Electronics Engineerin
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 20... 详细信息
来源: 评论
Optimal crowd navigation via spatio-temporal multidimensional collective data analysis
收藏 引用
NTT Technical Review 2017年 第9期15卷 1-7页
作者: Naya, Futoshi Miyamoto, Masaru Ueda, Naonori Innovative Communication Laboratory NTT Communication Science Laboratories Japan Service Innovation Laboratory NTT Service Evolution Laboratories Japan Machine Learning and Data Science Center NTT Communication Science Laboratories Japan
We introduce technology for predicting the risk of congestion in the near future from real-time observational data of people or automobile flows and for automatically deriving an optimal crowd navigation plan online t... 详细信息
来源: 评论