咨询与建议

限定检索结果

文献类型

  • 120 篇 期刊文献
  • 33 篇 会议

馆藏范围

  • 153 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 107 篇 工学
    • 70 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 29 篇 生物工程
    • 17 篇 生物医学工程(可授...
    • 15 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 13 篇 光学工程
    • 13 篇 电气工程
    • 11 篇 化学工程与技术
    • 6 篇 建筑学
    • 5 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
  • 84 篇 理学
    • 37 篇 数学
    • 32 篇 生物学
    • 23 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
    • 5 篇 地球物理学
    • 4 篇 大气科学
  • 28 篇 管理学
    • 16 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 17 篇 医学
    • 14 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 9 篇 公共卫生与预防医...
    • 5 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 经济学
  • 2 篇 法学

主题

  • 10 篇 machine learning
  • 7 篇 feature extracti...
  • 6 篇 image segmentati...
  • 5 篇 deep learning
  • 4 篇 surveys
  • 4 篇 data mining
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 deep neural netw...
  • 3 篇 convolution
  • 3 篇 contrastive lear...
  • 3 篇 large language m...
  • 3 篇 semantics
  • 3 篇 artificial intel...
  • 3 篇 diseases
  • 3 篇 data models
  • 2 篇 galaxies
  • 2 篇 recommender syst...
  • 2 篇 manuals

机构

  • 26 篇 center for data ...
  • 18 篇 center for machi...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 department of st...
  • 9 篇 national enginee...
  • 9 篇 beijing internat...
  • 8 篇 peking universit...
  • 8 篇 school of comput...
  • 7 篇 national biomedi...
  • 7 篇 national key lab...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 5 篇 lab crestview ra...
  • 5 篇 university of pe...
  • 5 篇 helmholtz ai hel...
  • 5 篇 peking universit...
  • 5 篇 department of ne...
  • 4 篇 sage bionetworks...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 wang liwei
  • 9 篇 li zhang
  • 9 篇 bin dong
  • 7 篇 jie zhao
  • 7 篇 zifan chen
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 xia yong
  • 6 篇 xie yutong
  • 5 篇 bakas spyridon
  • 5 篇 wang chunhao
  • 5 篇 kazerooni anahit...
  • 5 篇 haoshen li
  • 5 篇 chung verena
  • 5 篇 kofler florian
  • 5 篇 guizani mohsen

语言

  • 142 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Laboratory of Data Science and Machine Learning"
153 条 记 录,以下是121-130 订阅
排序:
Generative Artificial Intelligence in Healthcare: Ethical Considerations and Assessment Checklist
arXiv
收藏 引用
arXiv 2023年
作者: Ning, Yilin Teixayavong, Salinelat Shang, Yuqing Savulescu, Julian Nagaraj, Vaishaanth Miao, Di Mertens, Mayli Wei Ting, Daniel Shu Ling Ong, Jasmine Chiat Liu, Mingxuan Cao, Jiuwen Dunn, Michael Vaughan, Roger Hock Ong, Marcus Eng Sung, Joseph Jao-Yiu Topol, Eric J. Liu, Nan Centre for Quantitative Medicine Duke-NUS Medical School Singapore Singapore Centre for Biomedical Ethics National University of Singapore Singapore Singapore Wellcome Centre for Ethics and Humanities University of Oxford Oxford United Kingdom School of Medicine Imperial College London London United Kingdom Centre for Ethics Department of Philosophy University of Antwerp Antwerp Belgium Antwerp Center on Responsible AI University of Antwerp Antwerp Belgium Singapore Eye Research Institute Singapore National Eye Centre Singapore Singapore SingHealth AI Office Singapore Health Services Singapore Singapore Division of Pharmacy Singapore General Hospital Singapore Singapore Machine Learning and I-Health International Cooperation Base of Zhejiang Province Hangzhou Dianzi University Zhejiang China Artificial Intelligence Institute Hangzhou Dianzi University Zhejiang China Programme in Health Services and Systems Research Duke-NUS Medical School Singapore Singapore Department of Emergency Medicine Singapore General Hospital Singapore Singapore Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore State Key Laboratory of Digestive Disease The Chinese University of Hong Kong Hong Kong Scripps Research Translational Institute Scripps Research La Jolla CA United States Institute of Data Science National University of Singapore Singapore Singapore Centre for Quantitative Medicine Duke-NUS Medical School 8 College Road Singapore169857 Singapore
The widespread use of ChatGPT and other emerging technology powered by generative artificial intelligence (GenAI) has drawn much attention to potential ethical issues, especially in high-stakes applications such as he... 详细信息
来源: 评论
Feature extraction for hyperspectral imagery: The evolution from shallow to deep
arXiv
收藏 引用
arXiv 2020年
作者: Rasti, Behnood Hong, Danfeng Hang, Renlong Ghamisi, Pedram Kang, Xudong Chanussot, Jocelyn Benediktsson, Jon Atli Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany Univ. Grenoble Alpes CNRS Grenoble INP GIPSAlab Grenoble38000 France Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany College of Electrical and Information Engineering Hunan University Changsha410082 China Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Changsha410082 China Univ. Grenoble Alpes Inria CNRS Grenoble INP LJK GrenobleF-38000 France Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland Faculty of Electrical and Computer Engineering University of Iceland Reykjavik107 Iceland
The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dime... 详细信息
来源: 评论
Sketch-based Medical Image Retrieval
arXiv
收藏 引用
arXiv 2023年
作者: Kobayashi, Kazuma Gu, Lin Hataya, Ryuichiro Mizuno, Takaaki Miyake, Mototaka Watanabe, Hirokazu Takahashi, Masamichi Takamizawa, Yasuyuki Yoshida, Yukihiro Nakamura, Satoshi Kouno, Nobuji Bolatkan, Amina Kurose, Yusuke Harada, Tatsuya Hamamoto, Ryuji Division of Medical AI Research and Development National Cancer Center Research Institute 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Cancer Translational Research Team RIKEN Center for Advanced Intelligence Project 1-4-1 Nihonbashi Chuo-ku Tokyo103-0027 Japan Machine Intelligence for Medical Engineering Team RIKEN Center for Advanced Intelligence Project 1-4-1 Nihonbashi Chuo-ku Tokyo103-0027 Japan Research Center for Advanced Science and Technology The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo153-8904 Japan Medical Data Deep Learning Team Advanced Data Science Project RIKEN Information R&D and Strategy Headquarters 1-4-1 Nihonbashi Chuo-ku Tokyo103-0027 Japan Department of Experimental Therapeutics National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Diagnostic Radiology National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Neurosurgery and Neuro-Oncology National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Colorectal Surgery National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Department of Thoracic Surgery National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Radiation Safety and Quality Assurance Division National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Division of Research and Development for Boron Neutron Capture Therapy National Cancer Center Exploratory Oncology Research & Clinical Trial Center 5-1-1 Tsukiji Chuo-ku Tokyo104-0045 Japan Medical Physics Laboratory Division of Health Science Graduate School of Medicine Osaka University Yamadaoka 1-7 Osaka Suita-shi565-0871 Japan Department of Surgery Kyoto University Graduate School of Medicine 54 Shogoin Kawahara-cho Sakyo-ku Kyoto606-8507 Japan
The amount of medical images stored in hospitals is increasing faster than ever;however, utilizing the accumulated medical images has been limited. This is because existing content-based medical image retrieval (CBMIR... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
People flow prediction technology for crowd navigation
收藏 引用
NTT Technical Review 2018年 第8期16卷 47-52页
作者: Sato, Daisuke Shiohara, Hisako Miyamoto, Masaru Ueda, Naonori Proactive Navigation Project NTT Service Evolution Laboratories Japan Service Innovation Laboratory NTT Service Evolution Laboratories Japan Ueda Research Laboratory Japan Machine Learning and Data Science Center NTT Communication Science Laboratories Japan
We are investigating the use of incomplete observation data in order to predict the large-scale flow of people for major events such as the Olympic Games and to derive guidance measures in advance to prevent the occur... 详细信息
来源: 评论
Uplink-downlink duality between multiple-access and broadcast channels with compressing relays
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Liang Liu, Ya-Feng Patil, Pratik Yu, Wei the Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong the State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China The Edward S. Rogers Sr. Department of Electrical and Computer Engineering the University of Toronto the Department of Statistics and Data Science and the Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto 10 King’s College Road TorontoONM5S3G4 Canada
—Uplink-downlink duality refers to the fact that under a sum-power constraint, the capacity regions of a Gaussian multiple-access channel and a Gaussian broadcast channel with Hermitian transposed channel matrices ar... 详细信息
来源: 评论
Constructing Impactful machine learning Research for Astronomy: Best Practices for Researchers and Reviewers
arXiv
收藏 引用
arXiv 2023年
作者: Huppenkothen, Daniela Ntampaka, Michelle Ho, Matthew Fouesneau, Morgan Nord, Brian Peek, J.E.G. Walmsley, Mike Wu, John F. Avestruz, C. Buck, Tobias Brescia, Massimo Finkbeiner, Douglas P. Goulding, Andy D. Kacprzak, T. Melchior, Peter Pasquato, Mario Ramachandra, Nesar Ting, Yuan-Sen van de Ven, Glenn Villar, Soledad Villar, V.A. Zinger, Elad SRON Netherlands Institute for Space Research Niels Bohrweg 4 Leiden2333CA Netherlands Anton Pannekoek Institute for Astronomy University of Amsterdam Science Park 904 Amsterdam1098 XH Netherlands Space Telescope Science Institute BaltimoreMD21218 United States Department of Physics & Astronomy Johns Hopkins University BaltimoreMD21218 United States UMR 7095 98 bis bd Arago ParisF-75014 France Königstuhl 17 HeidelbergD-69117 Germany Fermi National Accelerator Laboratory P. O. Box 500 BataviaIL60510 United States Kavli Institute for Cosmological Physics University of Chicago ChicagoIL60637 United States Department of Astronomy and Astrophysics University of Chicago ChicagoIL60637 United States Jodrell Bank Centre for Astrophysics Department of Physics & Astronomy University of Manchester ManchesterM13 9PL United Kingdom Dunlap Institute for Astronomy & Astrophysics University of Toronto 50 St. George Street TorontoONM5S 3H4 Canada Leinweber Center for Theoretical Physics University of Michigan Ann ArborMI48109 United States Department of Physics University of Michigan Ann ArborMI48109 United States Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 205 Heidelberg69120 Germany Universität Heidelberg Zentrum für Astronomie Institut für Theoretische Astrophysik Albert-Ueberle-Straße 2 Heidelberg69120 Germany Department of Physics "E. Pancini " University Federico II of Napoli Via Cinthia 21 NapoliI-80126 Italy INAF Astronomical Observatory of Capodimonte Salita Moiariello 16 NapoliI-80131 Italy Department of Physics Harvard University 17 Oxford St. CambridgeMA02138 United States Harvard-Smithsonian Center for Astrophysics 60 Garden St. CambridgeMA02138 United States Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States Swiss Data Science Center Paul Scherrer Institute Villigen5303 Switzerland Center for Statistics & Machine Learn
machine learning has rapidly become a tool of choice for the astronomical community. It is being applied across a wide range of wavelengths and problems, from the classification of transients to neural network emulato... 详细信息
来源: 评论
167-PFlops deep learning for electron microscopy: From learning physics to atomic manipulation
167-PFlops deep learning for electron microscopy: From learn...
收藏 引用
2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018
作者: Patton, Robert M. Travis Johnston, J. Young, Steven R. Schuman, Catherine D. March, Don D. Potok, Thomas E. Rose, Derek C. Lim, Seung-Hwan Karnowski, Thomas P. Ziatdinov, Maxim A. Kalinin, Sergei V. Oak Ridge National Laboratory Oak RidgeTN37831-6085 United States Computational Data Analytics Group United States Geographic Information Science and Technology Group United States Imaging Signals and Machine Learning Group United States Institute for Functional Imaging of Materials United States Center for Nanophase Materials Sciences United States
An artificial intelligence system called MENNDL, which used 25,200 NVIDIA Volta GPUs on Oak Ridge National laboratory's Summit machine, automatically designed an optimal deep learning network in order to extract s... 详细信息
来源: 评论
Gradient descent finds global minima of deep neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Du, Simon S. Lee, Jason D. Li, Haochuan Wang, Liwei Zhai, Xiyu Machine Learning Department Carnegie Mellon University Data Science and Operations Department University of Southern California School of Physics Peking University Center for Data Science Peking University Beijing Institute of Big Data Research Key Laboratory of Machine Perception Moe School of Eecs Peking University Department of Eecs Massachusetts Institute of Technology
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a ... 详细信息
来源: 评论
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
arXiv
收藏 引用
arXiv 2023年
作者: Lekadir, Karim Feragen, Aasa Fofanah, Abdul Joseph Frangi, Alejandro F. Buyx, Alena Emelie, Anais Lara, Andrea Porras, Antonio R. Chan, An-Wen Navarro, Arcadi Glocker, Ben Botwe, Benard O. Khanal, Bishesh Beger, Brigit Wu, Carol C. Cintas, Celia Langlotz, Curtis P. Rueckert, Daniel Mzurikwao, Deogratias Fotiadis, Dimitrios I. Zhussupov, Doszhan Ferrante, Enzo Meijering, Erik Weicken, Eva González, Fabio A. Asselbergs, Folkert W. Prior, Fred Krestin, Gabriel P. Collins, Gary S. Tegenaw, Geletaw S. Kaissis, Georgios Misuraca, Gianluca Tsakou, Gianna Dwivedi, Girish Kondylakis, Haridimos Jayakody, Harsha Woodruf, Henry C. Mayer, Horst Joachim Aerts, Hugo JWL Walsh, Ian Chouvarda, Ioanna Buvat, Irène Tributsch, Isabell Rekik, Islem Duncan, James Kalpathy-Cramer, Jayashree Zahir, Jihad Park, Jinah Mongan, John Gichoya, Judy W. Schnabel, Julia A. Kushibar, Kaisar Riklund, Katrine Mori, Kensaku Marias, Kostas Amugongo, Lameck M. Fromont, Lauren A. Maier-Hein, Lena Alberich, Leonor Cerdá Rittner, Leticia Phiri, Lighton Marrakchi-Kacem, Linda Donoso-Bach, Lluís Martí-Bonmatí, Luis Cardoso, M. Jorge Bobowicz, Maciej Shabani, Mahsa Tsiknakis, Manolis Zuluaga, Maria A. Bielikova, Maria Fritzsche, Marie-Christine Camacho, Marina Linguraru, Marius George Wenzel, Markus De Bruijne, Marleen Tolsgaard, Martin G. Ghassemi, Marzyeh Ashrafuzzaman, Md Goisauf, Melanie Yaqub, Mohammad Abadía, Mónica Cano Mahmoud, Mukhtar M.E. Elattar, Mustafa Rieke, Nicola Papanikolaou, Nikolaos Lazrak, Noussair Díaz, Oliver Salvado, Olivier Pujol, Oriol Sall, Ousmane Guevara, Pamela Gordebeke, Peter Lambin, Philippe Brown, Pieta Abolmaesumi, Purang Dou, Qi Lu, Qinghua Osuala, Richard Nakasi, Rose Zhou, S. Kevin Napel, Sandy Colantonio, Sara Albarqouni, Shadi Joshi, Smriti Carter, Stacy Klein, Stefan Petersen, Steffen E. Aussó, Susanna Awate, Suyash Raviv, Tammy Riklin Cook, Tessa Mutsvangwa, Tinashe E.M. Rogers, Wendy A. Niessen, Wiro J. Puig-Bosch, Xènia Zeng, Yi Mohammed, Yunusa G. Aquino, Yves Saint James Salahuddin, Zohaib Starmans, Martijn P.A. Department de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain DTU Compute Technical University of Denmark Kgs Lyngby Denmark Department of Mathematics and Computer Science Faculty of Science and Technology Milton Margai Technical University Freetown Sierra Leone Center for Computational Imaging & Simulation Technologies in Biomedicine Schools of Computing and Medicine University of Leeds Leeds United Kingdom Cardiovascular Science and Electronic Engineering Departments KU Leuven Leuven Belgium Institute of History and Ethics in Medicine Technical University of Munich Munich Germany Faculty of Engineering of Systems Informatics and Sciences of Computing Galileo University Guatemala City Guatemala Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus AuroraCO United States Department of Medicine Women’s College Research Institute University of Toronto Toronto Canada Universitat Pompeu Fabra BarcelonaBeta Brain Research Center Barcelona Spain Department of Computing Imperial College London London United Kingdom School of Biomedical & Allied Health Sciences University of Ghana Accra Ghana Department of Midwifery & Radiography School of Health & Psychological Sciences City University of London United Kingdom Kathmandu Nepal European Heart Network Brussels Belgium Department of Thoracic Imaging University of Texas MD Anderson Cancer Center Houston United States IBM Research Africa Nairobi Kenya Departments of Radiology Medicine and Biomedical Data Science Stanford University School of Medicine Stanford United States Institute for AI and Informatics in Medicine Klinikum rechts der Isar Technical University Munich Munich Germany Department of Computing Imperial College London London United Kingdom Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania United Republic of Ioannina Greece Almaty AI Lab Almaty Kazakhstan
Background: Despite major advances in artificial intelligence (AI) research for healthcare, the deployment and adoption of AI technologies remain limited in clinical practice. In recent years, concerns have been raise... 详细信息
来源: 评论