咨询与建议

限定检索结果

文献类型

  • 120 篇 期刊文献
  • 33 篇 会议

馆藏范围

  • 153 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 107 篇 工学
    • 70 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 29 篇 生物工程
    • 17 篇 生物医学工程(可授...
    • 15 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 13 篇 光学工程
    • 13 篇 电气工程
    • 11 篇 化学工程与技术
    • 6 篇 建筑学
    • 5 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
  • 84 篇 理学
    • 37 篇 数学
    • 32 篇 生物学
    • 23 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
    • 5 篇 地球物理学
    • 4 篇 大气科学
  • 28 篇 管理学
    • 16 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
  • 17 篇 医学
    • 14 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 9 篇 公共卫生与预防医...
    • 5 篇 药学(可授医学、理...
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 经济学
  • 2 篇 法学

主题

  • 10 篇 machine learning
  • 7 篇 feature extracti...
  • 6 篇 image segmentati...
  • 5 篇 deep learning
  • 4 篇 surveys
  • 4 篇 data mining
  • 4 篇 accuracy
  • 3 篇 scalability
  • 3 篇 cancer
  • 3 篇 deep neural netw...
  • 3 篇 convolution
  • 3 篇 contrastive lear...
  • 3 篇 large language m...
  • 3 篇 semantics
  • 3 篇 artificial intel...
  • 3 篇 diseases
  • 3 篇 data models
  • 2 篇 galaxies
  • 2 篇 recommender syst...
  • 2 篇 manuals

机构

  • 26 篇 center for data ...
  • 18 篇 center for machi...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 department of st...
  • 9 篇 national enginee...
  • 9 篇 beijing internat...
  • 8 篇 peking universit...
  • 8 篇 school of comput...
  • 7 篇 national biomedi...
  • 7 篇 national key lab...
  • 6 篇 school of comput...
  • 6 篇 guangdong provin...
  • 6 篇 pazhou laborator...
  • 5 篇 lab crestview ra...
  • 5 篇 university of pe...
  • 5 篇 helmholtz ai hel...
  • 5 篇 peking universit...
  • 5 篇 department of ne...
  • 4 篇 sage bionetworks...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 wang liwei
  • 9 篇 li zhang
  • 9 篇 bin dong
  • 7 篇 jie zhao
  • 7 篇 zifan chen
  • 6 篇 li hongwei bran
  • 6 篇 linguraru marius...
  • 6 篇 xia yong
  • 6 篇 xie yutong
  • 5 篇 bakas spyridon
  • 5 篇 wang chunhao
  • 5 篇 kazerooni anahit...
  • 5 篇 haoshen li
  • 5 篇 chung verena
  • 5 篇 kofler florian
  • 5 篇 guizani mohsen

语言

  • 142 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Laboratory of Data Science and Machine Learning"
153 条 记 录,以下是81-90 订阅
排序:
Lung Ultrasound for the Detection of Pulmonary Tuberculosis Using Expert- and AI-Guided Interpretation: A Prospective Cohort Study
SSRN
收藏 引用
SSRN 2025年
作者: Suttels, Véronique Brokowski, Trevor Wachinou, Ablo Prudence Wolleb, Julia Hada, Aboudou Rasisou Du Toit, Jacques Daniel Fiogbé, Arnauld Attannon Guendehou, Brice Alovokpinhou, Frederic Sefou, Fadyl Makpemikpa, Ginette Bessat, Cécile Roux, Alexia Garcia, Elena Brahier, Thomas Opota, Onya Doenz, Jonathan Vignoud, Julien Agodokpessi, Gildas Affolabi, Dissou Hartley, Mary-Anne Boillat-Blanco, Noémie Department of Medicine Infectious Diseases Lausanne University Hospital University of Lausanne Lausanne Switzerland Yale School of Medicine Department of Biomedical Informatics & Data Science New HavenCT06510 United States Cotonou Benin Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa Emergency Department Lausanne University Hospital University of Lausanne Lausanne1011 Switzerland Institute of Microbiology University of Lausanne University Hospital Centre Lausanne Switzerland Lausanne1015 Switzerland National Reference Laboratory for Mycobacteriology Cotonou Benin Yale University United States Faculty of Health Sciences Benin Intelligent Global Health Machine Learning and Optimization Laboratory
Background: Point-of-care lung ultrasound (LUS) is a promising tool for portable sputum-free tuberculosis (TB) triage. We investigate the diagnostic performance of LUS to detect TB using expert and artificial intellig... 详细信息
来源: 评论
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big data System
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big D...
收藏 引用
IEEE Conference on Global Communications (GLOBECOM)
作者: Weidong Fang Chunsheng Zhu Mohsen Guizani Zhiqi Li Wuxiong Zhang Joel J.P.C. Rodrigues Science and Technology on Micro-system Laboratory Shanghai Institute of Micro-system and Information Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Beijing China Shanghai Research and Development Center for Micro-Nano Electronics Shanghai China College of Big Data and Internet Shenzhen Technology University Shenzhen China Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) UAE COPELABS Lusófona University Lisbon Portugal
Toward green Big data System (BDS), one of the key requirements is to save energy consumption so that the system lifetime can be prolonged. Hence, the energy evaluation metric for the measurement of energy efficiency ...
来源: 评论
Computationally Efficient Approximations for Matrix-based Rényi's Entropy
arXiv
收藏 引用
arXiv 2021年
作者: Gong, Tieliang Dong, Yuxin Yu, Shujian Dong, Bo The School of Computer Science and Technology Xi'an Jiaotong University Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an710049 China The Machine Learning Group UiT - The Arctic University of Norway Department of Computer Science Vrije University Amsterdam Amsterdam Netherlands
The recently developed matrix-based Rényi's αorder entropy enables measurement of information in data simply using the eigenspectrum of symmetric positive semi-definite (PSD) matrices in reproducing kernel H... 详细信息
来源: 评论
Nanoscale chemical imaging with structured X-ray illumination
收藏 引用
Proceedings of the National Academy of sciences of the United States of America 2023年 第49期120卷 e2314542120-e2314542120页
作者: Li, Jizhou Chen, Si Ratner, Daniel Blu, Thierry Pianetta, Piero Liu, Yijin Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park 94025 CA United States School of Data Science City University of HongKong Hong Kong X-ray Science Division Argonne National Laboratory Lemont 60439 IL United States Machine Learning Initiative SLAC National Accelerator Laboratory Menlo Park 94025 CA United States Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong Walker Department of Mechanical Engineering The University of Texas at Austin Austin 78705 TX United States
High-resolution imaging with compositional and chemical sensitivity is crucial for a wide range of scientific and engineering disciplines. Although synchrotron X-ray imaging through spectromicroscopy has been tremendo... 详细信息
来源: 评论
Robust and Fast Measure of Information via Low-rank Representation
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Yuxin Gong, Tieliang Yu, Shujian Chen, Hong Li, Chen School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Ministry of Education Xi’an710049 China Machine Learning Group UiT - The Arctic University of Norway Norway College of Science Huazhong Agriculture University Wuhan430070 China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China
The matrix-based Rényi’s entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it wid... 详细信息
来源: 评论
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
arXiv
收藏 引用
arXiv 2024年
作者: Bassi, Pedro R.A.S. Li, Wenxuan Tang, Yucheng Isensee, Fabian Wang, Zifu Chen, Jieneng Chou, Yu-Cheng Roy, Saikat Kirchhoff, Yannick Rokuss, Maximilian Huang, Ziyan Ye, Jin He, Junjun Wald, Tassilo Ulrich, Constantin Baumgartner, Michael Maier-Hein, Klaus H. Jaeger, Paul Ye, Yiwen Xie, Yutong Zhang, Jianpeng Chen, Ziyang Xia, Yong Xing, Zhaohu Zhu, Lei Sadegheih, Yousef Bozorgpour, Afshin Kumari, Pratibha Azad, Reza Merhof, Dorit Shi, Pengcheng Ma, Ting Du, Yuxin Bai, Fan Huang, Tiejun Zhao, Bo Wang, Haonan Li, Xiaomeng Gu, Hanxue Dong, Haoyu Yang, Jichen Mazurowski, Maciej A. Gupta, Saumya Wu, Linshan Zhuang, Jiaxin Chen, Hao Roth, Holger Xu, Daguang Blaschko, Matthew B. Decherchi, Sergio Cavalli, Andrea Yuille, Alan L. Zhou, Zongwei Department of Computer Science Johns Hopkins University United States Department of Pharmacy and Biotechnology University of Bologna Italy Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia Italy NVIDIA United States Germany Germany ESAT-PSI KU Leuven Belgium Faculty of Mathematics and Computer Science Heidelberg University Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Germany Shanghai Jiao Tong University China Shanghai Artificial Intelligence Laboratory China Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Germany DKFZ Germany School of Computer Science and Engineering Northwestern Polytechnical University China Australian Institute for Machine Learning The University of Adelaide Australia College of Computer Science and Technology Zhejiang University China Hong Kong University of Science and Technology Guangzhou China Hong Kong University of Science and Technology Hong Kong Faculty of Informatics and Data Science University of Regensburg Germany Faculty of Electrical Engineering and Information Technology RWTH Aachen University Germany Fraunhofer Institute for Digital Medicine MEVIS Germany Electronic & Information Engineering School Harbin Institute of Technology Shenzhen China China The Chinese University of Hong Kong Hong Kong Peking University China Department of Electrical and Computer Engineering Duke University United States Stony Brook University United States Department of Computer Science and Engineering Department of Chemical and Biological Engineering Division of Life Science Hong Kong University of Science and Technology Hong Kong Data Science and Computation Facility Fondazione Istituto Italiano di Tecnologia Italy Ecole Polytechnique Fédérale de Lausanne Switzerland
How can we test AI performance? This question seems trivial, but it isn’t. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and sho... 详细信息
来源: 评论
Estimate the efficiency of multiprocessor's cash memory work algorithms
arXiv
收藏 引用
arXiv 2021年
作者: Hamada, Mohamed A. Abdallah, Abdelrahman International Information Technology University Almaty Almaty050000 Kazakhstan Department of Machine Learning & Data Science Satbayev University Almaty Almaty050013 Kazakhstan National Open Research Laboratory for Information and Space Technologies Satbayev University Almaty Almaty050013 Kazakhstan
Many computer systems for calculating the proper organization of memory are among the most critical issues. Using a tier cache memory (along with branching prediction) is an effective means of increasing modern multi-... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Modeling Annotator Preference and Stochastic Annotation Error for Medical Image Segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Liao, Zehui Hu, Shishuai Xie, Yutong Xia, Yong National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University Xi’an710072 China Australian Institute for Machine Learning The University of Adelaide AdelaideSA5000 Australia
Manual annotation of medical images is highly subjective, leading to inevitable and huge annotation biases. Deep learning models may surpass human performance on a variety of tasks, but they may also mimic or amplify ... 详细信息
来源: 评论
Towards DMC accuracy across chemical space with scalable ∆-QML
arXiv
收藏 引用
arXiv 2022年
作者: Huang, Bing von Lilienfeld, O. Anatole Krogel, Jaron T. Benali, Anouar University of Vienna Faculty of Physics Kolingasse 14-16 Vienna1090 Austria Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Materials Science and Technology Division Oak Ridge National Laboratory Oak RidgeTN37831 United States Computational Sciences Division Argonne National Laboratory ArgonneIL60439 United States
In the past decade, quantum diffusion Monte Carlo (DMC) has been demonstrated to successfully predict the energetics and properties of a wide range of molecules and solids by numerically solving the electronic many-bo... 详细信息
来源: 评论