咨询与建议

限定检索结果

文献类型

  • 803 篇 会议
  • 508 篇 期刊文献

馆藏范围

  • 1,311 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 841 篇 工学
    • 445 篇 计算机科学与技术...
    • 371 篇 软件工程
    • 246 篇 控制科学与工程
    • 130 篇 电气工程
    • 128 篇 生物工程
    • 123 篇 生物医学工程(可授...
    • 105 篇 机械工程
    • 99 篇 电子科学与技术(可...
    • 89 篇 信息与通信工程
    • 80 篇 光学工程
    • 44 篇 仪器科学与技术
    • 44 篇 化学工程与技术
    • 35 篇 材料科学与工程(可...
    • 34 篇 力学(可授工学、理...
    • 23 篇 航空宇航科学与技...
    • 22 篇 动力工程及工程热...
    • 19 篇 冶金工程
    • 16 篇 交通运输工程
  • 503 篇 理学
    • 280 篇 数学
    • 140 篇 生物学
    • 132 篇 物理学
    • 101 篇 系统科学
    • 63 篇 统计学(可授理学、...
    • 38 篇 化学
  • 176 篇 管理学
    • 128 篇 管理科学与工程(可...
    • 49 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 71 篇 医学
    • 65 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 41 篇 药学(可授医学、理...
  • 15 篇 经济学
  • 12 篇 农学
  • 11 篇 法学
  • 5 篇 文学
  • 4 篇 艺术学
  • 3 篇 教育学
  • 2 篇 军事学

主题

  • 39 篇 feature extracti...
  • 32 篇 image segmentati...
  • 30 篇 training
  • 28 篇 image processing
  • 25 篇 computational mo...
  • 24 篇 machine learning
  • 23 篇 neurons
  • 22 篇 electroencephalo...
  • 22 篇 mathematical mod...
  • 22 篇 multi-agent syst...
  • 19 篇 intelligent cont...
  • 18 篇 biomedical imagi...
  • 16 篇 multi agent syst...
  • 15 篇 support vector m...
  • 15 篇 neural networks
  • 15 篇 laboratories
  • 15 篇 control systems
  • 15 篇 robustness
  • 14 篇 educational inst...
  • 14 篇 pattern recognit...

机构

  • 79 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 57 篇 school of automa...
  • 51 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 34 篇 shenzhen huazhon...
  • 27 篇 key laboratory o...
  • 26 篇 department of co...
  • 26 篇 alibaba group
  • 23 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 19 篇 control and inte...
  • 18 篇 key laboratory o...
  • 13 篇 institute for pa...
  • 12 篇 school of artifi...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...

作者

  • 66 篇 wu dongrui
  • 62 篇 sang nong
  • 53 篇 gao changxin
  • 48 篇 zeng zhigang
  • 47 篇 zhigang zeng
  • 40 篇 jian huang
  • 37 篇 pan linqiang
  • 34 篇 huang jian
  • 33 篇 cao zhiguo
  • 32 篇 yongji wang
  • 30 篇 hai-tao zhang
  • 29 篇 wang yongji
  • 27 篇 hamid soltanian-...
  • 26 篇 housheng su
  • 25 篇 wang xiang
  • 24 篇 su housheng
  • 24 篇 zhang shiwei
  • 22 篇 xi li
  • 20 篇 nong sang
  • 19 篇 hong hanyu

语言

  • 1,242 篇 英文
  • 35 篇 中文
  • 34 篇 其他
检索条件"机构=Laboratory of Image Processing and Intelligent Control"
1311 条 记 录,以下是511-520 订阅
排序:
A protocol for structured illumination microscopy with minimal reconstruction artifacts
收藏 引用
Biophysics Reports 2019年 第2期5卷 80-90页
作者: Junchao Fan Xiaoshuai Huang Liuju Li Shan Tan Liangyi Chen Key Laboratory of Image Processing and Intelligent Control of Ministry of Education of China School of Automation Huazhong University of Science and Technology State Key Laboratory of Membrane Biology Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular Medicine Peking University
The imaging rate of structured illumination microscopy(SIM) reached 188 Hz recently. As the exposure time decreases, the camera detects fewer virtual photons, while the noise level remains the same. As a result, the s... 详细信息
来源: 评论
Pool-Based Unsupervised Active Learning for Regression Using Iterative Representativeness-Diversity Maximization (iRDM)
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ziang Jiang, Xue Luo, Hanbin Fang, Weili Liu, Jiajing Wu, Dongrui Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology China School of Civil Engineering and Mechanics Huazhong University of Science and Technology China
Active learning (AL) selects the most beneficial unlabeled samples to label, and hence a better machine learning model can be trained from the same number of labeled samples. Most existing active learning for regressi... 详细信息
来源: 评论
Closer to Pre-trained Network Transfer Better
Closer to Pre-trained Network Transfer Better
收藏 引用
IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
作者: Siyu Chen Wei Li School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan People’s Republic of China Image Processing and Intelligent Control Key Laboratory Education Ministry of China Wuhan People’s Republic of China
In recent years, Deep Neural Network (DNN) has been widely used in the domain of computer vision, but its further development is restricted because of the lack of train samples. Fine-tuning is one of deep transfer lea... 详细信息
来源: 评论
Observer-Based Robust Containment control of Multi-agent Systems With Input Saturation
Observer-Based Robust Containment Control of Multi-agent Sys...
收藏 引用
第三十九届中国控制会议
作者: Juan Qian Xiaoling Wang Guo-Ping Jiang Housheng Su College of Automation and College of Artificial Intelligence Nanjing University of Posts and Telecommunicationsand Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot) School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology
In this paper, the robust containment control problem of the leader-following multi-agent systems with input saturation and input additive disturbance is addressed, where the followers can be informed by multiple lead... 详细信息
来源: 评论
A survey on negative transfer
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Wen Deng, Lingfei Zhang, Lei Wu, Dongrui the Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China the School of Microelectronics and Communication Engineering Chongqing University Chongqing400044 China
—Transfer learning (TL) utilizes data or knowledge from one or more source domains to facilitate the learning in a target domain. It is particularly useful when the target domain has very few or no labeled data, due ... 详细信息
来源: 评论
A visual kinematics calibration method for manipulator based on nonlinear optimization
arXiv
收藏 引用
arXiv 2020年
作者: Peng, Gang Wang, Zhihao Yang, Jin Li, Xinde Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China IEEE senior member School of Automation South East University Nanjing China
The traditional kinematic calibration method for manipulators requires precise three-dimensional measuring instruments to measure the end pose, which is not only expensive due to the high cost of the measuring instrum... 详细信息
来源: 评论
Transfer Learning for Motor imagery Based Brain-Computer Interfaces: A Complete Pipeline
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Dongrui Jiang, Xue Peng, Ruimin Kong, Wanzeng Huang, Jian Zeng, Zhigang Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Zhejiang Key Laboratory for Brain-Machine Collaborative Intelligence Hangzhou Dianzi University Hangzhou310018 China
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop ... 详细信息
来源: 评论
Parity space-based model mismatch detection for linear discrete time-invariant systems with unknown disturbances
Parity space-based model mismatch detection for linear discr...
收藏 引用
第三十九届中国控制会议
作者: Yi Tang Dan Ling Hong Zhang Yanewei Wang Ying Zheng the Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and AutomationHuazhong University of Science and Technology School of Electrical and Information Engineering Zhengzhou University of Light Industry School of Mechanical & Electrical Engineering Wuhan Institute of Technology
Model mismatch is one of the main factors of control performance degradation. In this paper, a new model mismatch detection approach with parity space-based methods is proposed for linear discrete time-invariant(LDTI... 详细信息
来源: 评论
Adversarial refinement network for human motion prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chao, Xianjin Bin, Yanrui Chu, Wenqing Cao, Xuan Ge, Yanhao Wang, Chengjie Li, Jilin Huang, Feiyue Leung, Howard City University of Hong Kong Hong Kong Hong Kong Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Tencent Youtu Lab Shanghai China
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough... 详细信息
来源: 评论
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM image processing
NiuEM: A Nested-iterative Unsupervised Learning Model for Si...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Rui Hu Jiaming Cai Wangjie Zheng Yang Yang Hong-Bin Shen Shanghai Jiao Tong University and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Jiao Tong University Shanghai China
Cryo-electron microscopy (cryo-EM) has become a mainstream technology for solving spatial structures of biomacromolecules, while the processing of cryo-EM images is a very challenging task. One of the great challenges... 详细信息
来源: 评论