咨询与建议

限定检索结果

文献类型

  • 792 篇 会议
  • 510 篇 期刊文献

馆藏范围

  • 1,302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 770 篇 工学
    • 388 篇 计算机科学与技术...
    • 305 篇 软件工程
    • 195 篇 信息与通信工程
    • 131 篇 控制科学与工程
    • 127 篇 电气工程
    • 115 篇 电子科学与技术(可...
    • 113 篇 生物医学工程(可授...
    • 104 篇 光学工程
    • 97 篇 生物工程
    • 77 篇 机械工程
    • 55 篇 仪器科学与技术
    • 48 篇 化学工程与技术
    • 34 篇 航空宇航科学与技...
    • 25 篇 力学(可授工学、理...
    • 24 篇 材料科学与工程(可...
    • 21 篇 动力工程及工程热...
    • 18 篇 建筑学
    • 16 篇 土木工程
  • 465 篇 理学
    • 252 篇 数学
    • 155 篇 物理学
    • 112 篇 生物学
    • 83 篇 统计学(可授理学、...
    • 54 篇 系统科学
    • 51 篇 化学
  • 163 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 64 篇 图书情报与档案管...
    • 25 篇 工商管理
  • 77 篇 医学
    • 67 篇 临床医学
    • 51 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
  • 13 篇 农学
  • 12 篇 法学
  • 10 篇 经济学
  • 8 篇 军事学
  • 7 篇 教育学
  • 3 篇 文学
  • 3 篇 艺术学
  • 1 篇 哲学

主题

  • 55 篇 feature extracti...
  • 51 篇 image processing
  • 48 篇 signal processin...
  • 47 篇 image segmentati...
  • 39 篇 laboratories
  • 39 篇 image reconstruc...
  • 30 篇 signal processin...
  • 27 篇 image coding
  • 27 篇 training
  • 25 篇 deep learning
  • 23 篇 image analysis
  • 22 篇 accuracy
  • 22 篇 robustness
  • 20 篇 support vector m...
  • 20 篇 pattern recognit...
  • 19 篇 data mining
  • 18 篇 magnetic resonan...
  • 18 篇 electroencephalo...
  • 18 篇 layout
  • 17 篇 compressed sensi...

机构

  • 34 篇 shenzhen huazhon...
  • 21 篇 university of ch...
  • 18 篇 image processing...
  • 15 篇 institute for pa...
  • 15 篇 national laborat...
  • 14 篇 center for signa...
  • 14 篇 school of artifi...
  • 13 篇 school of comput...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 12 篇 institute of ima...
  • 12 篇 key laboratory o...
  • 12 篇 institute of sig...
  • 11 篇 national key lab...
  • 10 篇 department of el...
  • 10 篇 laboratory for a...
  • 9 篇 school of artifi...
  • 9 篇 school of comput...
  • 9 篇 ministry of educ...
  • 9 篇 beijing aerospac...

作者

  • 23 篇 wu dongrui
  • 15 篇 cichocki andrzej
  • 15 篇 zeng zhigang
  • 15 篇 ping guo
  • 14 篇 ding mingyue
  • 14 篇 jian liu
  • 14 篇 andrzej cichocki
  • 13 篇 xi li
  • 12 篇 liu jian
  • 11 篇 li xi
  • 11 篇 zhang tianxu
  • 11 篇 mingyue ding
  • 10 篇 hong hanyu
  • 10 篇 jong chul ye
  • 9 篇 zhang xiuhua
  • 9 篇 jin-wen tian
  • 9 篇 yair moshe
  • 9 篇 yang jie
  • 9 篇 cheng-xiang wang
  • 8 篇 li chenglong

语言

  • 1,228 篇 英文
  • 48 篇 其他
  • 24 篇 中文
  • 1 篇 阿拉伯文
  • 1 篇 日文
检索条件"机构=Laboratory of Image and Signal Processing of the Institute of Science and Technology"
1302 条 记 录,以下是391-400 订阅
排序:
Cross-receptive Focused Inference Network for Lightweight image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Kalmannet: Data-Driven Kalman Filtering
Kalmannet: Data-Driven Kalman Filtering
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Guy Revach Nir Shlezinger Ruud J. G. van Sloun Yonina C. Eldar Signal Processing Laboratory (ISI) ETH Zurich Switzerland School of ECE Ben-Gurion University of the Negev Beer Sheva Israel Eindhoven University of Technology and with Phillips Research Eindhoven The Netherlands Faculty of Math and CS Weizmann Institute of Science Rehovot Israel
The Kalman filter (KF) is a celebrated signal processing algorithm, implementing optimal state estimation of dynamical systems that are well represented by a linear Gaussian state-space model. The KF is model-based, a... 详细信息
来源: 评论
L∞ Interval Observers Design for Actuator Fault Detection of Discrete-Time Linear Switched Systems
L∞ Interval Observers Design for Actuator Fault Detection o...
收藏 引用
International Conference on Systems and Control (ICSC)
作者: Ghassen Marouani Thach Ngoc Dinh Tarek Raïssi Shyam Kamal Hassani Messaoud Research Laboratory of Automatic Signal and Image Processing National School of Engineers of Monastir University of Monastir Tunisia Conservatoire National des Arts et Métiers (CNAM) Cedric - Laetitia Rue St-Martin Paris Cedex 03 Indian Institute of Technology (BHU) Varanasi U.P. India
This paper deals with fault detection for discrete-time linear switched systems affected by actuator fault, additive disturbances and measurement noises. In order to improve the accuracy and to attenuate the effects o... 详细信息
来源: 评论
Current Progress and Challenges in Large-scale 3D Mitochondria Instance Segmentation
TechRxiv
收藏 引用
TechRxiv 2023年
作者: Franco-Barranco, Daniel Lin, Zudi Jang, Won-Dong Wang, Xueying Shen, Qijia Yin, Wenjie Fan, Yutian Li, Mingxing Chen, Chang Xiong, Zhiwei Xin, Rui Liu, Hao Chen, Huai Li, Zhili Zhao, Jie Chen, Xuejin Pape, Constantin Conrad, Ryan De Folter, Jozefus Nightingale, Luke Jones, Martin L. Liu, Yanling Ziaei, Dorsa Huschauer, Stephan Arganda-Carreras, Ignacio Pfister, Hanspeter Wei, Donglai The Department of Computer Science and Artificial Intelligence University of the Basque Country Donostia-San Sebastian Spain San Sebastian Spain Ikerbasque Basque Foundation for Science Bilbao Spain Biofisika Institute CSIC UPV/EHU Bilbao Spain Harvard University All-ston MA United States The Department of Molecular and Cellular Biology Harvard University CambridgeMA United States The Wellcome Centre for Integrative Neuroimaging FMRIB Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom University of Science and Technology of China Anhui China The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai China The National Engineering Laboratory for Brain-inspired Intelligence Technology and Application University of Science and Technology of China Anhui China The Georg-August University Goettingen Germany The Center for Molecular Microscopy Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda United States The Cancer Research Technology Program Frederick National Laboratory for Cancer Research Frederick United States The Francis Crick Institute London United Kingdom The Advanced Biomedical Computational Science Group Frederick National Laboratory for Cancer Research FrederickMD United States The Computer Science Department Boston College Chestnut Hill MA United States
In this paper, we present the results of the MitoEM challenge on mitochondria 3D instance segmentation from electron microscopy images, organized in conjunction with the IEEE-ISBI 2021 conference. Our benchmark datase... 详细信息
来源: 评论
CMCRD: Cross-Modal Contrastive Representation Distillation for Emotion Recognition
arXiv
收藏 引用
arXiv 2025年
作者: Kan, Siyuan Wu, Huanyu Cui, Zhenyao Huang, Fan Xu, Xiaolong Wu, Dongrui Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Wuhan Institute of Digital Engineering Wuhan430074 China Shanghai Jiao Tong University Shanghai200240 China
Emotion recognition is an important component of affective computing, and also human-machine interaction. Unimodal emotion recognition is convenient, but the accuracy may not be high enough;on the contrary, multi-moda... 详细信息
来源: 评论
JCMF: A Novel Wideband DOA Estimator
JCMF: A Novel Wideband DOA Estimator
收藏 引用
IEEE International Conference on Radar
作者: Xiaoyu Zhang Haihong Tao Junqi Xue Jian Xie Jianpu Li Huihui Ma National Laboratory of Radar Signal Processing Xidian University Xi'an China State Administration of Science Technology and Industry for National Defence Beijing China School of Electronics and Information Northwestern Polytechnical University Xi'an China Shanghai Aerospace Electronic Technology Institute Shanghai China Taiyuan University of Technology Taiyuan China
Covariance matrix fitting is a classic problem in direction-of-arrival (DOA) estimation, but there has been little discussion about wideband signals. In this paper, a novel wideband DOA estimation method based on cova... 详细信息
来源: 评论
Learning bronchiole-sensitive airway segmentation cnns by feature recalibration and attention distillation  23rd
Learning bronchiole-sensitive airway segmentation cnns by fe...
收藏 引用
23rd International Conference on Medical image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Qin, Yulei Zheng, Hao Gu, Yun Huang, Xiaolin Yang, Jie Wang, Lihui Zhu, Yue-Min Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang China UdL INSA Lyon CREATIS CNRS UMR 5220 INSERM U1206 Lyon France
Training deep convolutional neural networks (CNNs) for airway segmentation is challenging due to the sparse supervisory signals caused by severe class imbalance between long, thin airways and background. In view of th... 详细信息
来源: 评论
Continuous Distributed processing of Software Defined Radar
Continuous Distributed Processing of Software Defined Radar
收藏 引用
IEEE International Conference on Radar
作者: Bing Li Qiang Qiu Shiqi Gong Yongjun Liu Yu Lei CAS Key Lab of Network Data Science and Technology Chinese Academy of Sciences Institute of Computing Technology Beijing China State Key Laboratory of Internet of Things for Smart City University of Macau Macau China National Laboratory of Radar Signal Processing Xidian University Xi'an China Golaxy Data Technology Co. Ltd. Beijing China
Software-defined radar has been an active research field for more than ten years. However, the low performance and low scalability of the traditional processing techniques of SDR make it hard to deal with complex rada... 详细信息
来源: 评论
Corrigendum to “Dolphin vocal sound generation via deep WaveGAN” [J. Electron. Sci. Technol. 20 (3) (2022), 100171]
收藏 引用
Journal of Electronic science and technology 2025年 第1期23卷
作者: Lue Zhang Hai-Ning Huang Li Yin Bao-Qi Li Di Wu Hao-Ran Liu Xi-Feng Li Yong-Le Xie Institute of Acoustics Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing Chinese Academy of Sciences Beijing 100190 China School of Automation Engineering University of Electronic Science and Technology of China Chengdu 611731 Sichuan China
来源: 评论
High Confidence Tracking with Offline Historical Learning and Online Correlation Filter Updating
High Confidence Tracking with Offline Historical Learning an...
收藏 引用
作者: Shou-dong HAN Hong-wei WANG Xin-xin XIA Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Research Institute of Huazhong University of Science and Technology in Shenzhen
Target tracking is one of the most challenging tasks in computer vision. In this paper, the high confidence tracking(HCT) algorithm is proposed by combining the offline historical learning network with online correlat... 详细信息
来源: 评论