咨询与建议

限定检索结果

文献类型

  • 792 篇 会议
  • 510 篇 期刊文献

馆藏范围

  • 1,302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 770 篇 工学
    • 388 篇 计算机科学与技术...
    • 305 篇 软件工程
    • 195 篇 信息与通信工程
    • 131 篇 控制科学与工程
    • 127 篇 电气工程
    • 115 篇 电子科学与技术(可...
    • 113 篇 生物医学工程(可授...
    • 104 篇 光学工程
    • 97 篇 生物工程
    • 77 篇 机械工程
    • 55 篇 仪器科学与技术
    • 48 篇 化学工程与技术
    • 34 篇 航空宇航科学与技...
    • 25 篇 力学(可授工学、理...
    • 24 篇 材料科学与工程(可...
    • 21 篇 动力工程及工程热...
    • 18 篇 建筑学
    • 16 篇 土木工程
  • 465 篇 理学
    • 252 篇 数学
    • 155 篇 物理学
    • 112 篇 生物学
    • 83 篇 统计学(可授理学、...
    • 54 篇 系统科学
    • 51 篇 化学
  • 163 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 64 篇 图书情报与档案管...
    • 25 篇 工商管理
  • 77 篇 医学
    • 67 篇 临床医学
    • 51 篇 基础医学(可授医学...
    • 35 篇 药学(可授医学、理...
  • 13 篇 农学
  • 12 篇 法学
  • 10 篇 经济学
  • 8 篇 军事学
  • 7 篇 教育学
  • 3 篇 文学
  • 3 篇 艺术学
  • 1 篇 哲学

主题

  • 55 篇 feature extracti...
  • 51 篇 image processing
  • 48 篇 signal processin...
  • 47 篇 image segmentati...
  • 39 篇 laboratories
  • 39 篇 image reconstruc...
  • 30 篇 signal processin...
  • 27 篇 image coding
  • 27 篇 training
  • 25 篇 deep learning
  • 23 篇 image analysis
  • 22 篇 accuracy
  • 22 篇 robustness
  • 20 篇 support vector m...
  • 20 篇 pattern recognit...
  • 19 篇 data mining
  • 18 篇 magnetic resonan...
  • 18 篇 electroencephalo...
  • 18 篇 layout
  • 17 篇 compressed sensi...

机构

  • 34 篇 shenzhen huazhon...
  • 21 篇 university of ch...
  • 18 篇 image processing...
  • 15 篇 institute for pa...
  • 15 篇 national laborat...
  • 14 篇 center for signa...
  • 14 篇 school of artifi...
  • 13 篇 school of comput...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 12 篇 institute of ima...
  • 12 篇 key laboratory o...
  • 12 篇 institute of sig...
  • 11 篇 national key lab...
  • 10 篇 department of el...
  • 10 篇 laboratory for a...
  • 9 篇 school of artifi...
  • 9 篇 school of comput...
  • 9 篇 ministry of educ...
  • 9 篇 beijing aerospac...

作者

  • 23 篇 wu dongrui
  • 15 篇 cichocki andrzej
  • 15 篇 zeng zhigang
  • 15 篇 ping guo
  • 14 篇 ding mingyue
  • 14 篇 jian liu
  • 14 篇 andrzej cichocki
  • 13 篇 xi li
  • 12 篇 liu jian
  • 11 篇 li xi
  • 11 篇 zhang tianxu
  • 11 篇 mingyue ding
  • 10 篇 hong hanyu
  • 10 篇 jong chul ye
  • 9 篇 zhang xiuhua
  • 9 篇 jin-wen tian
  • 9 篇 yair moshe
  • 9 篇 yang jie
  • 9 篇 cheng-xiang wang
  • 8 篇 li chenglong

语言

  • 1,228 篇 英文
  • 48 篇 其他
  • 24 篇 中文
  • 1 篇 阿拉伯文
  • 1 篇 日文
检索条件"机构=Laboratory of Image and Signal Processing of the Institute of Science and Technology"
1302 条 记 录,以下是491-500 订阅
排序:
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Non-bayesian social learning with uncertain models
arXiv
收藏 引用
arXiv 2019年
作者: Hare, James Z. Uribe, César A. Kaplan, Lance Jadbabaie, Ali Signal and Image processing branch US Army Research Laboratory AdelphiMD20783 United States Laboratory for Information and Decision Systems Institute for Data Systems and Society Massachusetts Institute of Technology CambridgeMA02139 United States
Non-Bayesian social learning theory provides a framework that models distributed inference for a group of agents interacting over a social network. In this framework, each agent iteratively forms and communicates beli... 详细信息
来源: 评论
Applying of Luneburg lens for multi-beam TEM-horn antenna
Applying of Luneburg lens for multi-beam TEM-horn antenna
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Bobreshov, Anatoly M. Uskov, Grigory K. Lysenko, Nikolay A. Sbitnev, Nikita S. Potapov, Alexander A. Voronezh Russia V.A. Kotel'nikov Institute of Radio Engineering and Electronics Russian Academy of Sciences Moscow Russia JNU-IREE Joint Laboratory of Fractal Method and Signal Processing Department of Electronic Engineering College of Information Science and Technology JiNan University Guangzhou China
Here, a multi-beam TEM-horn antenna with beam direction is proposed. Presented construction allows obtaining scanning beam and complicated antenna patterns, thus it can be used as substitute of ultra-wideband phased a... 详细信息
来源: 评论
A reconfigurable system learning for data classification using parallel processing
A reconfigurable system learning for data classification usi...
收藏 引用
2015 International Conference on Artificial Intelligence, ICAI 2015 - WORLDCOMP 2015
作者: Moreira, E.M. Maciel, C.D. Moreira, E.M. Zanoni, F.S. Federal Institute of Education Science and Technology of São Paulo São João da Boa Vista São Paulo Brazil Signal Processing Laboratory Department of Electrical Engineering University of São Paulo São Carlos São Paulo Brazil Systems Engineering and Information Technology Institute Federal University of Itajubá Itajubá Minas Gerais Brazil
This paper presents a System Learning with a task scheduler, which makes possible the utilization of several classification and validation methods, allowing the distribution of tasks between the module systems. This a... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
A Research on the Control System of High-Speed Homopolar Motor with Solid Rotor Based on Flywheel Energy Storage
收藏 引用
Complexity 2020年 2020卷
作者: Jing, Lili Yu, Yandong Xue, Xiaochuan Key Laboratory of High Speed Signal Processing and Internet of Things Technology Application Jining Normal University Ulanqab Inner Mongolia 012000 China Department of Computer Science Jining Normal University Ulanqab Inner Mongolia 012000 China Systems Engineering Research Institute of China State Shipbuilding Corporation Beijing 100191 China
In view of the defects of the motors used for flywheel energy storage such as great iron loss in rotation, poor rotor strength, and robustness, a new type of motor called electrically excited homopolar motor is adopte... 详细信息
来源: 评论
Estimating crop primary productivity with sentinel-2 and landsat 8 using machine learning methods trained with radiative transfer simulations
arXiv
收藏 引用
arXiv 2020年
作者: Wolanin, Aleksandra Camps-Valls, Gustau Gómez-Chova, Luis Mateo-García, Gonzalo van der Tol, Christiaan Zhang, Yongguang Guanter, Luis Section 1.4 Remote Sensing GFZ German Research Centre for Geosciences Helmholtz-Centre Potsdam Germany Image Processing Laboratory Universitat de València València Spain Faculty of ITC University of Twente Enschede Netherlands Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology International Institute for Earth System Sciences Nanjing University Nanjing210023 China
Satellite remote sensing has been widely used in the last decades for agricultural applications, both for assessing vegetation condition and for subsequent yield prediction. Existing remote sensing-based methods to es... 详细信息
来源: 评论
Measurement of liquid flow rate among the annular flow in vertical tee junction
arXiv
收藏 引用
arXiv 2020年
作者: Huang, Shuo Fu, Tianyu Zhang, Guanmin Sun, Yu Laboratory of Signal and Image Processing School of Biological Sciences and Medical Engineering Southeast University Nanjing210096 China International Laboratory for Children's Medical Imaging Research School of Biological Sciences and Medical Engineering Southeast University Nanjing210096 China School of Energy and Power Engineering Shandong University Jinan250061 China Institute of Cancer and Genomic Science University of Birmingham BirminghamB15 2TT United Kingdom
Since the liquid flow rate of the annular flow is closely related to the heat exchange efficiency, it has great significance to measure the liquid flow rate of the annular flow in vertical tee junction. In order to ac... 详细信息
来源: 评论
Range-segment Motion Compensation based on Integrated INS for Wide-swath Synthetic Aperture Sonar
Range-segment Motion Compensation based on Integrated INS fo...
收藏 引用
第二届先进电子材料、计算机与材料工程国际学术会议(AEMCME 2019)
作者: Yu Zhang Rongxing Zhong Jiyuan Liu Linzhe Wei Peng Wang Pengfei Zhang Institute of Acoustics Chinese Academy of Sciences Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing Chinese Academy of Sciences University of Chinese Academy of Sciences
Motion errors have severe effect on synthetic aperture sonar(SAS) imagery if worse than a fraction of a wavelength along the entire aperture. Not only currents, but vehicle instability randomly causes periodic motion ...
来源: 评论
Multi-adapter RGBT tracking
arXiv
收藏 引用
arXiv 2019年
作者: Li, Chenglong Lu, Andong Zheng, Aihua Tu, Zhengzheng Tang, Jin School of Computer Science and Technology Anhui University Hefei230601 China Key Laboratory of Industrial Image Processing and Analysis of Anhui Province Institute of Physical Science and Information Technology Anhui University Hefei230601 China
The task of RGBT tracking aims to take the complementary advantages from visible spectrum and thermal infrared data to achieve robust visual tracking, and receives more and more attention in recent years. Existing wor... 详细信息
来源: 评论