咨询与建议

限定检索结果

文献类型

  • 197 篇 会议
  • 187 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 389 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 248 篇 工学
    • 172 篇 计算机科学与技术...
    • 142 篇 软件工程
    • 56 篇 控制科学与工程
    • 50 篇 信息与通信工程
    • 28 篇 机械工程
    • 28 篇 电气工程
    • 24 篇 生物工程
    • 22 篇 光学工程
    • 20 篇 电子科学与技术(可...
    • 20 篇 生物医学工程(可授...
    • 10 篇 交通运输工程
    • 9 篇 化学工程与技术
    • 8 篇 安全科学与工程
    • 7 篇 仪器科学与技术
    • 7 篇 材料科学与工程(可...
    • 7 篇 动力工程及工程热...
    • 5 篇 建筑学
    • 5 篇 土木工程
  • 125 篇 理学
    • 67 篇 数学
    • 28 篇 物理学
    • 27 篇 系统科学
    • 26 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 12 篇 化学
  • 59 篇 管理学
    • 40 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 13 篇 法学
    • 12 篇 社会学
  • 10 篇 医学
    • 10 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 7 篇 农学
  • 2 篇 经济学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 13 篇 automation
  • 13 篇 laboratories
  • 13 篇 feature extracti...
  • 10 篇 semantics
  • 9 篇 artificial intel...
  • 9 篇 training
  • 8 篇 deep learning
  • 8 篇 process control
  • 7 篇 reinforcement le...
  • 7 篇 image segmentati...
  • 7 篇 visualization
  • 7 篇 control systems
  • 6 篇 computer science
  • 6 篇 application soft...
  • 6 篇 neural networks
  • 6 篇 mobile robots
  • 6 篇 navigation
  • 6 篇 trajectory
  • 6 篇 automatic contro...
  • 6 篇 machine learning

机构

  • 20 篇 school of artifi...
  • 19 篇 state key labora...
  • 19 篇 state key labora...
  • 17 篇 department of au...
  • 9 篇 hubei key labora...
  • 9 篇 the pillar of in...
  • 9 篇 the state key la...
  • 8 篇 pillar of inform...
  • 8 篇 school of electr...
  • 8 篇 the school of co...
  • 8 篇 the school of au...
  • 8 篇 school of comput...
  • 8 篇 school of automa...
  • 7 篇 key laboratory o...
  • 7 篇 school of automa...
  • 7 篇 school of electr...
  • 7 篇 school of comput...
  • 6 篇 school of mechan...
  • 6 篇 guangdong-hongko...
  • 6 篇 the department o...

作者

  • 14 篇 xiong zehui
  • 14 篇 kang jiawen
  • 13 篇 niyato dusit
  • 10 篇 du hongyang
  • 8 篇 johansson karl h...
  • 8 篇 gao feifei
  • 8 篇 fei-yue wang
  • 8 篇 wang changwei
  • 8 篇 kim dong in
  • 8 篇 hu weiming
  • 8 篇 xu rongtao
  • 7 篇 derong liu
  • 7 篇 yi xinlei
  • 7 篇 xu shibiao
  • 6 篇 wang da-han
  • 6 篇 k. koskinen
  • 6 篇 changshui zhang
  • 6 篇 xiang cheng
  • 6 篇 zhang junping
  • 6 篇 yang tao

语言

  • 362 篇 英文
  • 21 篇 其他
  • 6 篇 中文
检索条件"机构=Laboratory of Information and Computer Systems in Automation"
389 条 记 录,以下是201-210 订阅
排序:
Distributed delay model of the McKeithan’s network
收藏 引用
IFAC-PapersOnLine 2019年 第7期52卷 33-38页
作者: György Lipták Katalin M. Hangos Process Control Research Group Systems and Control Laboratory Computer and Automation Research Institute Hungarian Academy of Sciences P.O. Box 63 H-1518 Budapest Hungary Department of Electrical Engineering and Information Systems University of Pannonia Veszprém Hungary
In this paper CRNs containing linear reaction chains with multiple joint complexes were considered in order to obtain an equivalent reduced order delayed CRN model with distributed time delays. For this purpose, our e... 详细信息
来源: 评论
Sparse coding driven deep decision tree ensembles for nuclear segmentation in digital pathology images
arXiv
收藏 引用
arXiv 2020年
作者: Song, Jie Xiao, Liang Molaei, Mohsen Lian, Zhichao College of Automation & College of Artificial Intelligence Nanjing University of Posts and Telecommunications Nanjing210023 China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Nanjing University of Science and Technology Nanjing210094 China
In this paper, we propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task. The method, called ... 详细信息
来源: 评论
Statistical approach to detection of attacks for stochastic cyber-physical systems
arXiv
收藏 引用
arXiv 2020年
作者: Marelli, Damián Sui, Tianju Fu, Minyue Lu, Renquan School of Automation Guangdong University of Technology Guangzhou China French Argentine International Center for Information and Systems Sciences National Scientific and Technical Research Council Argentina School of Control Science and Engineering Dalian University of Technology Dalian China School of Electrical Engineering and Computer Science University of Newcastle CallaghanNSW2308 Australia School of Automation Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control Guandong University of Technology Guangzhou China
We study the problem of detecting an attack on a stochastic cyber-physical system. We aim to treat the problem in its most general form. We start by introducing the notion of asymptotically detectable attacks, as thos... 详细信息
来源: 评论
CBS-GAN: A Band Selection Based Generative Adversarial Net for Hyperspectral Sample Generation
收藏 引用
IOP Conference Series: Earth and Environmental Science 2021年 第1期734卷
作者: Yulin Qiao Mostofa Zaman Mohammad Yi Li Xiaobo Liu Zhihua Cai School of Automation China University of Geosciences (Wuhan) 430074 Wuhan China Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems 430074 Wuhan China Hubei Key Laboratory of Intelligent Geo-Information Processing China University of Geosciences Wuhan 430078 China School of Computer Science China University of Geosciences (Wuhan) 430078 Wuhan China
Sample generation is an effective method to improve the performance of hyperspectral image classification by generating virtual samples for training sample expansion in the training process of classification. However,...
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
A registration-aided domain adaptation network for 3D Point cloud based place recognition
arXiv
收藏 引用
arXiv 2020年
作者: Qiao, Zhijian Hu, Hanjiang Shi, Weiang Chen, Siyuan Liu, Zhe Wang, Hesheng Department of Automation Insititue of Medical Robotics Key Laboratory of System Control and Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China Beijing Advanced Innovation Center for Intelligent Robots and Systems Beijing Institute of Technology China Department of Mechanical Engineering Carnegie Mellon University United States Department of Computer Science and Technology University of Cambridge United Kingdom
In the field of large-scale SLAM for autonomous driving and mobile robotics, 3D point cloud based place recognition has aroused significant research interest due to its robustness to changing environments with drastic... 详细信息
来源: 评论
Roadmap on Neuromorphic Photonics
arXiv
收藏 引用
arXiv 2025年
作者: Brunner, Daniel Shastri, Bhavin J. Al-Qadasi, Mohammed A. Ballani, H. Barbay, Sylvain Biasi, Stefano Bienstman, Peter Bilodeau, Simon Bogaerts, Wim Böhm, Fabian Brennan, G. Buckley, Sonia Cai, Xinlun Strinati, Marcello Calvanese Canakci, B. Charbonnier, Benoit Chemnitz, Mario Chen, Yitong Cheung, Stanley Chiles, Jeff Choi, Suyeon Christodoulides, Demetrios N. Chrostowski, Lukas Chu, J. Clegg, J.H. Cletheroe, D. Conti, Claudio Dai, Qionghai Di Lauro, Luigi Diamantopoulos, Nikolaos-Panteleimon Dinc, Niyazi Ulas Ewaniuk, Jacob Fan, Shanhui Fang, Lu Franchi, Riccardo Freire, Pedro Gentilini, Silvia Gigan, Sylvain Giorgi, Gian Luca Gkantsidis, C. Gladrow, J. Goi, Elena Goldmann, M. Grabulosa, A. Gu, Min Guo, Xianxin Hejda, Matěj Horst, F. Hsieh, Jih-Liang Hu, Jianqi Hu, Juejun Huang, Chaoran Hurtado, Antonio Jaurigue, Lina Kalinin, K.P. Kamalian-Kopae, Morteza Kelly, D.J. Khajavikhan, Mercedeh Kremer, H. Laydevant, Jeremie Lederman, Joshua C. Lee, Jongheon Lenstra, Daan Li, Gordon H.Y. Li, Mo Li, Yuhang Lin, Xing Lin, Zhongjin Lis, Mieszko Lüdge, Kathy Lugnan, Alessio Lupo, Alessandro Lvovsky, A.I. Manuylovich, Egor Marandi, Alireza Marchesin, Federico Massar, Serge McCaughan, Adam N. McMahon, Peter L. Moralis-Pegios, Miltiadis Morandotti, Roberto Moser, Christophe Moss, David J. Mukherjee, Avilash Nikdast, Mahdi Offrein, B.J. Oguz, Ilker Oripov, Bakhrom O'Shea, G. Ozcan, Aydogan Parmigiani, F. Pasricha, Sudeep Pavanello, Fabio Pavesi, Lorenzo Peserico, Nicola Pickup, L. Pierangeli, Davide Pleros, Nikos Porte, Xavier Primavera, Bryce A. Prucnal, Paul Psaltis, Demetri Puts, Lukas Qiao, Fei Rahmani, B. Raineri, Fabrice Ríos Ocampo, Carlos A. Robertson, Joshua Romeira, Bruno Roques-Carmes, Charles Rotenberg, Nir Rowstron, A. Schoenhardt, Steffen Schwartz, Russell L.T. Shainline, Jeffrey M. Shekhar, Sudip Skalli, A. Sohoni, Mandar M. Sorger, Volker J. Soriano, Miguel C. Spall, James Stabile, Ripalta Stiller, Birgit Sunada, Satoshi Tefas, Anastasios Tossoun, Bassem Tsakyridis, Apostolos Turitsyn, Sergei K. Van der Sande, G Université Marie et Louis Pasteur CNRS UMR 6174 Institut FEMTO-ST Besançon25000 France Centre for Nanophotonics Department of Physics Engineering Physics & Astronomy Queen's University Canada Department of Electrical and Computer Engineering The University of British Columbia Vancouver Canada Microsoft Research Cambridge United Kingdom Université Paris-Saclay CNRS Centre de Nanosciences et de Nanotechnologies France Nanoscience Laboratory Department of Physics University of Trento Italy Photonics Research Group Department of Information Technology Ghent University imec Belgium Princeton University NJ United States Hewlett Packard Labs Hewlett Packard Enterprise Böblingen Germany National Institute of Standards and Technology BoulderCO United States State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat-sen University China Enrico Fermi Research Center Rome Italy Université Grenoble-Alpes CEA Leti Grenoble France Leibniz-Institute of Photonic Technology Jena Germany Institute of Applied Optics and Biophysics Jena Germany Department of Automation Tsinghua University Beijing China Department of Electrical and Computer Engineering North Carolina State University NC United States Department of Electrical Engineering Stanford University CA United States University of Southern California Los AngelesCA United States Department of Physics Sapienza University Rome Italy Institute for Complex Systems National Research Council Rome Italy Varennes Canada NTT Device Technology Labs NTT Corporation Kanagawa Atsugi Japan Institute of Electrical and Microengineering School of Engineering École Polytechnique Fédérale de Lausanne Switzerland Edward L. Ginzton Laboratory Stanford University StanfordCA United States Department of Electronic Engineering Tsinghua University China Beijing National Research Center for Information Science and Technology Tsinghua University China Aston Univ
Neuromorphic photonics are processors inspired by the human brain and enabled by light (photons) instead of traditional electronics. Neuromorphic photonics and its associated concepts are experiencing a significant re... 详细信息
来源: 评论
Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking  31
Learning Attentions: Residual Attentional Siamese Network fo...
收藏 引用
31st IEEE/CVF Conference on computer Vision and Pattern Recognition (CVPR)
作者: Wang, Qiang Teng, Zhu Xing, Junliang Gao, Jin Hu, Weiming Maybank, Stephen University of Chinese Academy of Sciences Beijing China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China Department of Computer Science and Information Systems Birkbeck College University of London UK
Offline training for object tracking has recently shown great potentials in balancing tracking accuracy and speed. However, it is still difficult to adapt an offline trained model to a target tracked online. This work... 详细信息
来源: 评论
On the peculiarities of the exchange of data between applications in high-level languages and matlab functions  1
On the peculiarities of the exchange of data between applica...
收藏 引用
1st Workshop computer Science and Engineering in the framework of the 5th International Scientific-Methodical Conference "Problems of Mathematical and Natural-Scientific Training in Engineering Education, CSITinMNSTinEE 2018
作者: Krasnovidov, Alexander V. Khomonenko, Anatoly D. Zabrodin, Andrew V. Smirnov, Alexander V. Department of Information and Computer Systems Emperor Alexander I St. Petersburg State Transport University St. Petersburg Russia Laboratory of Computer Aided Integrated Systems St.Petersburg Institute for Informatics and Automation of the RAS Saint Petersburg Russia
The possibilities of data exchange between functions in the language of the Matlab system with applications in high-level languages are considered. Programs in high-level languages appropriately to use in conjunction ... 详细信息
来源: 评论
Convolutional ordinal regression forest for image ordinal estimation
arXiv
收藏 引用
arXiv 2020年
作者: Zhu, Haiping Shan, Hongming Zhang, Yuheng Che, Lingfu Xu, Xiaoyang Zhang, Junping Shi, Jianbo Wang, Fei-Yue The Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China The Institute of Science and Technology for Brain-inspired Intelligence MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China The Shanghai Center for Brain Science and Brain-inspired Technology Shanghai201210 China The GRASP Laboratory University of Pennsylvania PhiladelphiaPA United States The State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China The Institute of Systems Engineering Macau University of Science and Technology 999078 China The University of Chinese Academy of Sciences Beijing100049 China
Image ordinal estimation is to predict the ordinal label of a given image, which can be categorized as an ordinal regression problem. Recent methods formulate an ordinal regression problem as a series of binary classi... 详细信息
来源: 评论