咨询与建议

限定检索结果

文献类型

  • 640 篇 会议
  • 237 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 878 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 538 篇 工学
    • 250 篇 计算机科学与技术...
    • 229 篇 控制科学与工程
    • 226 篇 软件工程
    • 123 篇 机械工程
    • 92 篇 电气工程
    • 70 篇 仪器科学与技术
    • 67 篇 信息与通信工程
    • 54 篇 生物工程
    • 49 篇 电子科学与技术(可...
    • 35 篇 化学工程与技术
    • 34 篇 生物医学工程(可授...
    • 30 篇 材料科学与工程(可...
    • 28 篇 光学工程
    • 22 篇 动力工程及工程热...
    • 22 篇 安全科学与工程
    • 21 篇 力学(可授工学、理...
    • 20 篇 交通运输工程
    • 19 篇 冶金工程
    • 17 篇 土木工程
    • 16 篇 建筑学
  • 267 篇 理学
    • 137 篇 数学
    • 76 篇 物理学
    • 54 篇 系统科学
    • 52 篇 生物学
    • 35 篇 统计学(可授理学、...
    • 28 篇 化学
  • 99 篇 管理学
    • 82 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 21 篇 医学
    • 17 篇 临床医学
  • 13 篇 经济学
  • 12 篇 法学
  • 7 篇 农学
  • 4 篇 军事学
  • 2 篇 教育学

主题

  • 40 篇 control systems
  • 32 篇 robot sensing sy...
  • 29 篇 intelligent robo...
  • 26 篇 robot kinematics
  • 25 篇 mobile robots
  • 24 篇 manipulators
  • 23 篇 robots
  • 20 篇 feature extracti...
  • 20 篇 intelligent cont...
  • 18 篇 accuracy
  • 16 篇 legged locomotio...
  • 16 篇 force
  • 16 篇 mathematical mod...
  • 15 篇 real-time system...
  • 15 篇 trajectory
  • 15 篇 robustness
  • 15 篇 training
  • 13 篇 computational mo...
  • 13 篇 predictive model...
  • 13 篇 navigation

机构

  • 221 篇 institutes for r...
  • 164 篇 key laboratory o...
  • 135 篇 shenyang institu...
  • 121 篇 university of ch...
  • 89 篇 state key labora...
  • 28 篇 tianjin key labo...
  • 27 篇 college of compu...
  • 24 篇 chinese academy ...
  • 22 篇 laboratory of in...
  • 19 篇 key laboratory o...
  • 19 篇 school of electr...
  • 18 篇 chinese academy ...
  • 15 篇 school of inform...
  • 14 篇 school of artifi...
  • 12 篇 shenyang univers...
  • 11 篇 college of infor...
  • 11 篇 chinese academy ...
  • 11 篇 shenyang institu...
  • 11 篇 college of scien...
  • 10 篇 shanghai enginee...

作者

  • 25 篇 stjepan bogdan
  • 23 篇 tao zhang
  • 22 篇 chen zengqiang
  • 22 篇 zengqiang chen
  • 21 篇 peng zeng
  • 21 篇 song chunhe
  • 19 篇 zeng peng
  • 18 篇 zhongxin liu
  • 17 篇 qiang huang
  • 16 篇 zhang hualiang
  • 15 篇 zhang tao
  • 15 篇 liu zhongxin
  • 15 篇 hualiang zhang
  • 15 篇 wei zhang
  • 14 篇 yang zhijia
  • 14 篇 wang hesheng
  • 14 篇 chunhe song
  • 13 篇 matko orsag
  • 13 篇 bogdan stjepan
  • 11 篇 liu yang

语言

  • 848 篇 英文
  • 20 篇 其他
  • 10 篇 中文
检索条件"机构=Laboratory of Intelligent Control and Robotics"
878 条 记 录,以下是351-360 订阅
排序:
A Multi-Model Fusion Approach for Transformer Fault Detection
A Multi-Model Fusion Approach for Transformer Fault Detectio...
收藏 引用
Information Technology,Big Data and Artificial Intelligence (ICIBA), International Conference on IEEE International Conference on
作者: Ke Zhou Wei Zhang Ligang Li Shaoming Pan Chengwei Huang Guangxi Power Grid Equipment Monitoring and Diagnosis Technology Innovation Center Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment Electric Power Research Institute of Guangxi Power Grid CO. LTD. Nanning State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Key Laboratory of Networked Control Systems Chinese Academy of Sciences China Power Supply Bureau of Guangxi Hezhou Power Grid Co. Ltd.
Addressing the weak generalization capability and suboptimal prediction performance of single mechanistic and data-driven models, this paper proposes a transformer fault detection method based on the fusion of mechani... 详细信息
来源: 评论
Towards Autonomous Navigation of a Mobile Robot in a Steep Slope Vineyard
Towards Autonomous Navigation of a Mobile Robot in a Steep S...
收藏 引用
Proceedings of the International Convention MIPRO
作者: I. Hrabar J. Goričanec Z. Kovačić University of Zagreb Faculty of Electrical Engineering and Computing Laboratory for Robotics and Intelligent Control Systems (LARICS) Zagreb Croatia
This paper explores potential applications of an autonomous all-terrain mobile manipulator (AMM) in the agricultural vineyard environment. A robotic arm mounted on a mobile base performs a spraying task while moving p...
来源: 评论
Environment-Driven Online LiDAR-Camera Extrinsic Calibration
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Zhiwei Li, Jiaqi Zhong, Ping Fan, Rui The Department of Control Science & Engineering The College of Electronics & Information Engineering Tongji University Shanghai201804 China The School of Computer Science and Engineering Central South University Hunan Changsha410083 China The National Key Laboratory of Science and Technology on Automatic Target Recognition National University of Defense Technology Hunan Changsha410073 China The Department of Control Science & Engineering The College of Electronics & Information Engineering Shanghai Research Institute for Intelligent Autonomous Systems The State Key Laboratory of Intelligent Autonomous Systems Frontiers Science Center for Intelligent Autonomous Systems Tongji University Shanghai201804 China The National Key Laboratory of Human-Machine Hybrid Augmented Intelligence Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Shaanxi Xi’an710049 China
LiDAR-camera extrinsic calibration (LCEC) is the core for data fusion in computer vision. Existing methods typically rely on customized calibration targets or fixed scene types, lacking the flexibility to handle varia... 详细信息
来源: 评论
Path-tracking of Mobile Robot Using PD-type Iterative Learning control with Forgetting Factor
Path-tracking of Mobile Robot Using PD-type Iterative Learni...
收藏 引用
第35届中国控制与决策会议
作者: Tao Zhang Jingzhe Fang Yun Teng Xintong Wang Yiqiang Zhang Xiyou Chen School of Electrical Engineering Dalian University of Technology Shenyang Institute of Automation Chinese Academy of Sciences Key Laboratory of Networked Control Systems Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences School of Electrical Engineering Shenyang University of Technology
In this paper,a discrete iterative learning control strategy is proposed for the path-tracking problem of mobile robot trajectory tracking with repeated *** algorithm adds the forgetting factor to the PD-type discrete... 详细信息
来源: 评论
Fast Realization of Robot 3D Simulation Based on WebGL
Fast Realization of Robot 3D Simulation Based on WebGL
收藏 引用
第35届中国控制与决策会议
作者: Tao Zhang Xintong Wang Yun Teng Jingzhe Fang Yiqiang Zhang Xiyou Chen School of Electrical Engineering Dalian University of Technology Shenyang Institute of Automation Chinese Academy of Sciences Key Laboratory of Networked Control Systems Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences School of Electrical Engineering Shenyang University of Technology
As science and technology have advanced,an increasing number of people are focusing their study on 3 D robot *** 3 D quick simulation of the mechanical arm can be achieved using 3 D modeling software and *** the third... 详细信息
来源: 评论
Research on intrusion detection of industrial control system based on improved QPSO-SVM
Research on intrusion detection of industrial control system...
收藏 引用
2022 International Conference on Electronic Information Technology, EIT 2022
作者: Yu, Yajie Liu, Xianda Wei, Weixuan Chen, Hengfei Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang110016 China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China University of Chinese Academy of Sciences Beijing100049 China College of Information Engineering Shenyang University of Chemical Technology Shenyang110142 China
Intrusion detection technology can effectively evaluate the security state of the system. However, the accuracy of traditional intrusion detection methods still needs to be improved. Therefore, this paper proposed a S... 详细信息
来源: 评论
Application of Deep Learning Method to Estimate Bottomhole Pressure Dynamics of Oil Wells
Application of Deep Learning Method to Estimate Bottomhole P...
收藏 引用
IEEE International Symposium on Industrial Electronics (ISIE)
作者: Haibo Cheng Shichao Li Peng Zeng Valeriy Vyatkin State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China Department of Computer Science Electrical and Space Engineering Luleå University of Technology Luleå Sweden Department of Electrical Engineering and Automation Aalto University Helsinki Finland
Surrogate models, which have become an effective and popular method to close loop reservoir management problems, use a data-driven approach to predict dynamic injection and production wells parameters and optimize wat...
来源: 评论
Minimizing Data Collection Latency for Coexisting Time-Critical Wireless Networks with Tree Topologies
收藏 引用
IEEE Transactions on Network and Service Management 2025年
作者: Zhang, Jialin Liang, Wei Yang, Bo Shi, Huaguang Liang, Ying-Chang Chinese Academy of Sciences State Key Laboratory of Robotics Shenyang Institute of Automation Shenyang110016 China Chinese Academy of Sciences Key Laboratory of Networked Control System Shenyang Institute of Automation Shenyang110016 China Northwest A and F University College of Information Engineering Yangling712100 China Henan University School of Artificial Intelligence Zhengzhou450046 China University of Electronic Science and Technology of China Center for Intelligent Networking and Communications Chengdu611731 China
Time-Critical Wireless Network (TCWN) is a promising communication technology that can satisfy the low latency, high reliability, and deterministic requirements of mission-critical applications. Multiple TCWNs require... 详细信息
来源: 评论
An optimization Strategy for Deep Neural Networks Training
An optimization Strategy for Deep Neural Networks Training
收藏 引用
Image Processing, Computer Vision and Machine Learning (ICICML), International Conference on
作者: Tingting Wu Peng Zeng Chunhe Song State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China University of Chinese Academy of Sciences Beijing China
Learning rate is one of the essential hyperparameters influencing the training process and the accuracy of deep neural networks. However, until now, it is challenging to determine an optimal learning rate. A large lea... 详细信息
来源: 评论
Learning Disentangled Representations and Temporal-Correlation Dynamics for Robotic Anomaly Diagnosis
Learning Disentangled Representations and Temporal-Correlati...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Dong Liu Hongmin Wu Kezheng Sun Yisheng Guan Biomimetic and Intelligent Robotics Lab (BIRL) School of Electromechanical Engineering Guangdong University of Technology Guangzhou China Guangdong Key Laboratory of Modern Control Technology Institute of Intelligent Manufacturing Guangdong Academy of Sciences Guangzhou China Pazhou Lab Guangzhou China
Anomalous diagnosis is valuable for reducing potential damages in long-term autonomy robot manipulation tasks, especially in Human-robot collaboration scenarios. Deep learning-based methods have been widely investigat... 详细信息
来源: 评论