咨询与建议

限定检索结果

文献类型

  • 26 篇 期刊文献
  • 23 篇 会议

馆藏范围

  • 49 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 16 篇 计算机科学与技术...
    • 14 篇 软件工程
    • 8 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 6 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 光学工程
    • 3 篇 生物医学工程(可授...
    • 3 篇 生物工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 网络空间安全
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 地质资源与地质工...
    • 1 篇 船舶与海洋工程
  • 23 篇 理学
    • 9 篇 数学
    • 7 篇 物理学
    • 4 篇 生物学
    • 3 篇 化学
    • 3 篇 系统科学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 统计学(可授理学、...
  • 7 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 2 篇 医学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 农学

主题

  • 4 篇 reinforcement le...
  • 4 篇 reverberation
  • 3 篇 blind source sep...
  • 2 篇 deep learning
  • 2 篇 image segmentati...
  • 2 篇 optimization
  • 2 篇 prescribed conve...
  • 2 篇 synthetic apertu...
  • 2 篇 heterogeneous ne...
  • 1 篇 group activity r...
  • 1 篇 probability dens...
  • 1 篇 intrusion detect...
  • 1 篇 millimeter wave ...
  • 1 篇 personalized fed...
  • 1 篇 immune detection
  • 1 篇 multipath effect
  • 1 篇 millimeter waves
  • 1 篇 quantitative mat...
  • 1 篇 noise reduction
  • 1 篇 transformer

机构

  • 8 篇 school of automa...
  • 7 篇 school of automa...
  • 7 篇 school of automa...
  • 7 篇 school of automa...
  • 5 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 5 篇 henan engineerin...
  • 5 篇 school of mechan...
  • 4 篇 guangdong key la...
  • 4 篇 111 center for i...
  • 3 篇 school of automa...
  • 3 篇 intelligent netw...
  • 3 篇 guangdong-hongko...
  • 3 篇 laboratory of in...
  • 3 篇 school of electr...
  • 2 篇 school of electr...
  • 2 篇 leshan normal un...
  • 2 篇 science and tech...
  • 2 篇 riken 103-0027
  • 2 篇 key laboratory o...

作者

  • 15 篇 xie shengli
  • 8 篇 sun weijun
  • 8 篇 xie yuan
  • 7 篇 zou tao
  • 6 篇 chen ci
  • 5 篇 shengli xie
  • 4 篇 yang junjie
  • 3 篇 feng bao
  • 3 篇 caiming liu
  • 3 篇 zhihui hu
  • 3 篇 chunhua zhu
  • 3 篇 zhu chunhua
  • 2 篇 binkun liu
  • 2 篇 zhenni li
  • 2 篇 bao feng
  • 2 篇 zhou guoxu
  • 2 篇 hu zhihui
  • 2 篇 lu senliang
  • 2 篇 li zhenni
  • 2 篇 chen yehang

语言

  • 49 篇 英文
检索条件"机构=Laboratory of Intelligent Detection and Information Processing"
49 条 记 录,以下是1-10 订阅
排序:
Artificial Immune detection for Network Intrusion Data Based on Quantitative Matching Method
收藏 引用
Computers, Materials & Continua 2024年 第2期78卷 2361-2389页
作者: CaiMing Liu Yan Zhang Zhihui Hu Chunming Xie School of Electronic Information and Artificial Intelligence Leshan Normal UniversityLeshan614000China Intelligent Network Security Detection and Evaluation Laboratory Leshan Normal UniversityLeshan614000China Internet Natural Language Intelligent Processing Key Laboratory of Education Department of Sichuan Province Leshan Normal UniversityLeshan614000China
Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection *** paper proposes an artificial immune detection m... 详细信息
来源: 评论
Grain condition inspection: one improved grey wolf algorithm for nodes deployment optimization combining with path planning of multi-inspection robots
收藏 引用
Soft Computing 2024年 第20期28卷 11971-11986页
作者: Zhu, Chunhua Zhang, Jilong Yang, Jing Key Laboratory of Grain Information Processing and Control Ministry of Education Henan University of Technology Henan Zhengzhou450001 China Henan Key Laboratory of Grain Photoelectric Detection and Control Henan University of Technology Henan Zhengzhou450001 China Henan Engineering Laboratory of Grain Condition Intelligent Detection and Application Henan University of Technology Henan Zhengzhou450001 China
Grain inspection robots can detect abnormal information such as grain insects and impurities on the grain surface by deploying detection nodes, it has a significant for the safety of grain storage. Generally, the grey... 详细信息
来源: 评论
Control Policy Learning Design for Vehicle Urban Positioning via BeiDou Navigation
收藏 引用
Journal of Systems Science & Complexity 2024年 第1期37卷 114-135页
作者: QIN Yahang ZHANG Chengye CHEN Ci XIE Shengli LEWIS Frank L School of Automation Guangdong University of TechnologyGuangzhou 510006China Guangdong Key Laboratory of IoT Information Technology Guangzhou 510006China. Center for Intelligent Batch Manufacturing Based on IoT Technology Key Laboratory of Intelligent Detection and The Internet of Things in Manufacturing Ministry of EducationGuangzhou 510006China Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing Guangzhou 510006China Key Laboratory of Intelligent Information Processing and System Integration of IoT Ministry of EducationGuangzhou 510006China. UTA Research Institute The University of Texas at ArlingtonFort WorthTX 76019USA
This paper presents a learning-based control policy design for point-to-point vehicle positioning in the urban environment via BeiDou *** navigating in urban canyons,the multipath effect is a kind of interference that... 详细信息
来源: 评论
Low Heterogeneity Feature Transfer-Based Federated Learning Algorithm for Early Stage Lung Cancer Classification  24
Low Heterogeneity Feature Transfer-Based Federated Learning ...
收藏 引用
2024 2nd International Conference on Internet of Things and Cloud Computing Technology, IoTCCT 2024
作者: Xu, Jun Feng, Bao Shi, Jiangfeng Lu, Senliang Chen, Yehang Chen, Xiangmeng School of Computer and Electronic Information Guangxi University Nanning China Laboratory of Intelligent Detection and Information Processing Guilin University of Aerospace Technology Guilin China Department of Radiology Jiangmen Central Hospital Jiangmen China
The problem of imbalanced distribution in multi-center medical data leads to suboptimal model performance. Therefore, to address the heterogeneity issue in multi-center data, a low heterogeneity feature transfer-based... 详细信息
来源: 评论
A Low Complexity Beam Selection Method for MmWave Massive MIMO Systems
A Low Complexity Beam Selection Method for MmWave Massive MI...
收藏 引用
2023 International Conference on Ubiquitous Communication, Ucom 2023
作者: Zhu, Chunhua Ji, Qinwen Guo, Xinying Henan University of Technology The Key Laboratory of Grain Information Processing and Control The Henan Key Laboratory of Grain Photoelectric Detection and Control Zhengzhou China Henan University of Technology Henan Engineering Laboratory of Grain Condition Intelligent Detection and Application Zhengzhou China
The levels of inter-user interference (IUI) usually vary due to the different geographical locations of users, but, most existing beam selection methods apply the same beam selection criteria for all users, which is d... 详细信息
来源: 评论
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第2期11卷 430-445页
作者: Jiawen Kang Junlong Chen Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie IEEE School of Automation Guangdong University of TechnologyGuangzhou 510006China 111 Center for Intelligent Batch Manufacturing based on IoT Technology Guangzhou 510006China Key Laboratory of Intelligent Information Processing and System Integration of IoT Ministry of EducationGuangzhou 510006China School of Computer Science and Engineering Nanyang Technological UniversitySingaporeSingapore Pillar of Information Systems Technology and Design Singapore University of Technology and DesignSingaporeSingapore College of Communication Engineering Army Engineering University of PLANanjing 210007China National Natural Science Foundation of China Beijing 100085China Key Laboratory of Intelligent Detection and IoT in Manufacturing Ministry of EducationGuangzhou 510006China Guangdong Key Laboratory of IoT Information Technology Guangzhou 510006China
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... 详细信息
来源: 评论
Solo Adaptation for Distributed Synchronization With Application to Event-Triggered Linear Multi-Agent Systems
收藏 引用
IEEE Transactions on Automatic Control 2025年 第6期70卷 4225-4232页
作者: Chen, Ci Zheng, Zhiyang Lewis, Frank L. Xie, Kan Xie, Shengli Guangdong University of Technology Guangdong Provincial Key Laboratory of Intelligent Systems and Optimization Integration Key Laboratory of Intelligent Information Processing and System Integration of IoT Ministry of Education School of Automation Guangzhou510006 China Guangdong University of Technology School of Automation Guangdong Guangzhou510006 China The University of Texas at Arlington UTA Research Institute Fort Worth76118 United States Guangdong University of Technology 111 Center for Intelligent Batch Manufacturing Based on IoT Technology School of Automation Guangzhou China Guangdong University of Technology Key Laboratory of Intelligent Detection and The Internet of Things in Manufacturing Ministry of Education School of Automation Guangzhou510006 China
We study a solo adaptation-based protocol design problem for distributed synchronization of event-triggered linear multi-agent systems (MAS) over general directed graphs. We show that a solo adaptive gain, a locally s... 详细信息
来源: 评论
Controlled-source electromagnetic noise attenuation via a deep convolutional neural network and high-quality sounding curve screening mechanism
收藏 引用
Geophysics 2025年 第3期90卷 WA125-WA140页
作者: Liu, Yecheng Li, Diquan Li, Jin Zhang, Xian Central South University Monitoring Ministry of Education Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Changsha China Hunan Provincial Key Laboratory of Non-ferrous Resources and Geological Hazard Detection Changsha China Central South University School of Geoscience and Info-physics Changsha China Hunan Normal University College of Information Science and Engineering Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Changsha China Hunan University of Finance and Economics School of Information Technology and Management Hunan Provincial Key Laboratory of Finance & Economics Big Data Science and Technology Changsha China
Strong noise is one of the biggest challenges in controlled-source electromagnetic (CSEM) exploration, which severely affects the quality of the recorded signal. We develop a novel and effective CSEM noise attenuation... 详细信息
来源: 评论
Federated Learning based on Feature Transfer: Multi-center Nuclear Segmentation of Histological Images  5
Federated Learning based on Feature Transfer: Multi-center N...
收藏 引用
5th International Conference on Frontiers Technology of information and Computer, ICFTIC 2023
作者: Lu, Senliang Feng, Bao Chen, Yehang Huang, Zijun School of Electronic Engineering and Automation Guilin University of Electronic Technology Guilin541004 China Laboratory of Intelligent Detection and Information Processing Guilin University of Aerospace Technology Guilin City Guangxi Province541004 China
Federated learning has enabled multiple medical data centers to collaboratively train segmentation models without sharing data. However, the existence of Non-IID data across different data centers leads to poor model ... 详细信息
来源: 评论
Adaptive Neural Consensus Tracking Control for Nonlinear Multiagent Systems with Dead Zone and Sensor Faults  42
Adaptive Neural Consensus Tracking Control for Nonlinear Mul...
收藏 引用
42nd Chinese Control Conference, CCC 2023
作者: Huang, Chengjie Chen, Ci Liu, Zhi Li, Zhenni Guangdong University of Technology Guangzhou510006 China Guangdong Key Laboratory of IoT Information Technology Guangzhou510006 China 111 Center for Intelligent Batch Manufacturing Based on IoT Technology Guangzhou510006 China Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing Guangzhou510006 China Key Laboratory of Intelligent Information Processing and System Integration of IoT Ministry of Education Guangzhou510006 China Key Laboratory of Intelligent Detection and the Internet of Things in Manufacturing Ministry of Education Guangzhou510006 China
In this paper, an adaptive neural tracking control design is investigated for uncertain multiagent systems (MASs) with actuator dead zone and sensor faults. The adaptive control technique based on neural networks is e... 详细信息
来源: 评论