咨询与建议

限定检索结果

文献类型

  • 2,021 篇 会议
  • 1,519 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 3,546 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,311 篇 工学
    • 1,612 篇 计算机科学与技术...
    • 1,394 篇 软件工程
    • 545 篇 信息与通信工程
    • 285 篇 控制科学与工程
    • 268 篇 生物工程
    • 201 篇 电气工程
    • 200 篇 机械工程
    • 194 篇 电子科学与技术(可...
    • 188 篇 光学工程
    • 175 篇 生物医学工程(可授...
    • 131 篇 化学工程与技术
    • 98 篇 仪器科学与技术
    • 65 篇 动力工程及工程热...
    • 62 篇 交通运输工程
    • 61 篇 建筑学
    • 56 篇 材料科学与工程(可...
    • 51 篇 土木工程
  • 1,290 篇 理学
    • 746 篇 数学
    • 330 篇 物理学
    • 315 篇 生物学
    • 222 篇 统计学(可授理学、...
    • 127 篇 化学
    • 97 篇 系统科学
  • 642 篇 管理学
    • 370 篇 图书情报与档案管...
    • 291 篇 管理科学与工程(可...
    • 96 篇 工商管理
  • 127 篇 医学
    • 107 篇 临床医学
    • 89 篇 基础医学(可授医学...
    • 61 篇 药学(可授医学、理...
  • 61 篇 法学
    • 51 篇 社会学
  • 51 篇 农学
  • 34 篇 经济学
  • 25 篇 教育学
  • 16 篇 艺术学
  • 10 篇 军事学
  • 9 篇 哲学
  • 8 篇 文学

主题

  • 159 篇 feature extracti...
  • 140 篇 semantics
  • 117 篇 training
  • 89 篇 information proc...
  • 73 篇 computational mo...
  • 72 篇 laboratories
  • 70 篇 deep learning
  • 65 篇 face recognition
  • 63 篇 object detection
  • 62 篇 computers
  • 56 篇 visualization
  • 53 篇 accuracy
  • 52 篇 data mining
  • 51 篇 image segmentati...
  • 48 篇 convolution
  • 48 篇 humans
  • 45 篇 data models
  • 44 篇 robustness
  • 42 篇 decoding
  • 40 篇 machine learning

机构

  • 432 篇 key laboratory o...
  • 324 篇 university of ch...
  • 83 篇 key laboratory o...
  • 76 篇 peng cheng labor...
  • 61 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 48 篇 key laboratory o...
  • 48 篇 fujian provincia...
  • 47 篇 the key laborato...
  • 47 篇 graduate univers...
  • 46 篇 school of comput...
  • 46 篇 key laboratory o...
  • 46 篇 jiangxi province...
  • 44 篇 chinese academy ...
  • 38 篇 key laboratory o...
  • 37 篇 hubei province k...
  • 35 篇 national enginee...
  • 33 篇 graduate univers...
  • 33 篇 institute of dig...
  • 33 篇 school of comput...

作者

  • 98 篇 zhongzhi shi
  • 92 篇 shiguang shan
  • 90 篇 xilin chen
  • 87 篇 shi zhongzhi
  • 80 篇 liu qun
  • 70 篇 huang qingming
  • 46 篇 qing he
  • 42 篇 xu qianqian
  • 39 篇 zhang fuquan
  • 38 篇 he qing
  • 38 篇 wen gao
  • 37 篇 li hua
  • 36 篇 liu yang
  • 36 篇 feng yang
  • 32 篇 jiang shuqiang
  • 31 篇 cao juan
  • 30 篇 chen xilin
  • 30 篇 shen linlin
  • 30 篇 gao wen
  • 30 篇 zhuge hai

语言

  • 3,130 篇 英文
  • 349 篇 其他
  • 79 篇 中文
检索条件"机构=Laboratory of Intelligent Information Processing Institute of Computing Technology"
3546 条 记 录,以下是851-860 订阅
排序:
A Scalable Sparse Transformer Model for Singing Melody Extraction
A Scalable Sparse Transformer Model for Singing Melody Extra...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Shuai Yu Jun Liu Yi Yu Wei Li School of Computer Science and Technology Donghua University Shanghai China National Institute of Informatics (NII) Tokyo Japan School of Computer Science and Technology Fudan University Shanghai China Shanghai Key Laboratory of Intelligent Information Processing Fudan University Shanghai China
Extracting the melody of a singing voice is an essential task within the realm of music information retrieval (MIR). Recently, transformer based models have drawn great attention in the field of MIR. However, due to t...
来源: 评论
Exploring Data Geometry for Continual Learning
Exploring Data Geometry for Continual Learning
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zhi Gao Chen Xu Feng Li Yunde Jia Mehrtash Harandi Yuwei Wu Beijing Key Laboratory of Intelligent Information Technology School of Computer Science & Technology Beijing Institute of Technology China Guangdong Laboratory of Machine Perception and Intelligent Computing Shenzhen MSU-BIT University China Department of Electrical and Computer Systems Eng. Monash University and Data61 Australia
Continual learning aims to efficiently learn from a non-stationary stream of data while avoiding forgetting the knowledge of old data. In many practical applications, data complies with non-Euclidean geometry. As such...
来源: 评论
Two-Stage OD Flow Prediction for Emergency in Urban Rail Transit
收藏 引用
IEEE Transactions on intelligent Transportation Systems 2024年 第1期25卷 920-928页
作者: Zhu, Guangyu Ding, Jiacun Wei, Yun Yi, Yang Xu, Sendren Sheng-Dong Wu, Edmond Q. Beijing Jiaotong University Key Lab. of Transport Industry of Big Data Application Technologies for Comprehensive Transport The Beijing Research Center of Urban Traffic Information Sensing and Service Technologies Beijing100044 China Beijing Mass Transit Railway Operation Corporation Ltd. Beijing100014 China Yangzhou University College of Information Engineering Yangzhou225127 China National Taiwan University of Science and Technology Automation and Control Center The Graduate Institute of Automation and Control Taipei106335 Taiwan Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China The Shanghai Engineering Research Center of Intelligent Control and Management Department of Automation Shanghai200240 China
Urban rail transit (URT) is vulnerable to natural disasters and social emergencies including fire, storm and epidemic (such as COVID-19), and real-time origin-destination (OD) flow prediction provides URT operators wi... 详细信息
来源: 评论
Balance Multi-Head Attention based on Software and Hardware Co-design  9
Balance Multi-Head Attention based on Software and Hardware ...
收藏 引用
9th IEEE International Conference on Cyber Security and Cloud computing and 8th IEEE International Conference on Edge computing and Scalable Cloud, CSCloud-EdgeCom 2022
作者: Xu, Dian Hu, Wei Liu, Fang Fan, Zimeng Shi, Qingsong Wuhan University of Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System College of Computer Science Wuhan China Wuhan University Department of Information Engineering Wuhan Institute of City School of Computer Science Wuhan China Zhejiang University College of Computer Science Hangzhou China
Recently, the Transformer-based models have achieved leading results in many research areas such as natural language processing and computer vision. However, since Transformer-based models have a huge computational co... 详细信息
来源: 评论
BADA-LAT: Efficient Local Attention Transformer for Chinese Named Entity Recognition with Boundary and LLM-Based Data Augmentation  27th
BADA-LAT: Efficient Local Attention Transformer for Chinese ...
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Qiu, Xiaoping Yang, Ke Du, Shiling School of Computing and Artificial Intelligence Southwest Jiaotong University No. 999 Xi’an Road Sichuan Chengdu611756 China Tangshan Institute of Southwest Jiaotong University No. 6 Jingqu Road Hebei Tangshan063000 China National United Engineering Laboratory of Integrated and Intelligent Transportation No. 111 North Section 1 Second Ring Road Sichuan Chengdu610031 China Sichuan Key Laboratory of Manufacturing Industry Chain Collaboration and Information Support Technology No. 999 Xi’an Road Sichuan Chengdu610016 China Engineering Research Center of Sustainable Urban Intelligent Transportation No. 999 Xi’an Road Sichuan Chengdu611756 China Sichuan Institute of Industrial Software Technology No. 61 Sha’wan Road Sichuan Chengdu610031 China
Progress in Chinese Named Entity Recognition (CNER) has highlighted lexicon-based methods that use word information to boost performance. However, these methods neglect two crucial aspects: the regulari... 详细信息
来源: 评论
Multiscale Spatial Sparse Unmixing for Remotely Sensed Hyperspectral Imagery
Multiscale Spatial Sparse Unmixing for Remotely Sensed Hyper...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Jiajun Zheng Huqing Liang Shaoquan Zhang Fan Li Pengfei Lai Shengqian Wang Chengzhi Deng Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing Nanchang Institute of Technology Nanchang China Guangzhou Municipal Construction Group Co. LTD Guangzhou China
Spectral unmixing is a crucial aspect of hyperspectral image processing. Given the low spatial resolution of hyperspectral remote sensing sensors, combined with the complexity and diversity of actual ground objects, h...
来源: 评论
Collaborative Consistency Autoencoder Hyperspectral Unmixing Using Deep Image Prior
Collaborative Consistency Autoencoder Hyperspectral Unmixing...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Min Huang Mengxiong Tang Fan Li Shaoquan Zhang Shengqian Wang Ningyuan Zhang Chengzhi Deng Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing Nanchang Institute of Technology Nanchang China Guangzhou Municipal Construction Group Co. LTD Guangzhou China
In the field of hyperspectral unmixing, deep learning has received increasing attention due to its powerful learning and data representation capabilities. Autoencoder is a popular technique for unmixing. Recently, an ...
来源: 评论
Mongolian Medicine Named Entity Recognition via Dictionary-Based Synonym Generalization
Mongolian Medicine Named Entity Recognition via Dictionary-B...
收藏 引用
IEEE International Conference on Cloud computing and Intelligence Systems (CCIS)
作者: Si Qin Feilong Bao Uuganbaatar Dulamragchaa College of Computer Science Inner Mongolia University Huhhot China National & Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian Huhhot China Inner Mongolia Key Laboratory of Mongolian Information Processing Technology Huhhot China Institute of Mathematics and Digital Technology Mongolian Academy of Sciences Ulaanbaatar Mongolia
The task of named entity recognition in Mongolian medicine poses challenges due to the diversity and complexity of terminology and herbal names. Variations in names used across different literature sources and regions...
来源: 评论
Cross-Modal Object Tracking via Modality-Aware Fusion Network and A Large-Scale Dataset
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Lei Zhang, Mengya Li, Cheng Li, Chenglong Tang, Jin The Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China The Information Materials and Intelligent Sensing Laboratory of Anhui Province Key Laboratory of Intelligent Computing and Signal Processing The Ministry of Education Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China The School of Computer Science and Technology Anhui University Hefei230601 China
Visual tracking often faces challenges such as invalid targets and decreased performance in low-light conditions when relying solely on RGB image sequences. While incorporating additional modalities like depth and inf... 详细信息
来源: 评论
Automation 5.0: The Key to Systems Intelligence and Industry 5.0
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第8期11卷 1723-1727页
作者: Ljubo Vlacic Hailong Huang Mariagrazia Dotoli Yutong Wang Petros A.Ioannou Lili Fan Xingxia Wang Raffaele Carli Chen Lv Lingxi Li Xiaoxiang Na Qing-Long Han Fei-Yue Wang Institute of Intelligent and Integrated Systems and the School of Engineering and Built Environment Griffith UniversityNathanQLD 4111Australia Department of Aeronautical and Aviation Engineering The Hong Kong Polytechnic UniversityHong KongChina Department of Electrical and Information Engineering Polytechnic of Bari70126 BariItaly State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of AutomationChinese Academy of SciencesBeijing 100190and also with the Qingdao Academy of Intelligent IndustriesQingdao 266114China Department of Electrical Engineering-Systems University of Southern CaliforniaLos AngelesCA 90007 USA School of Automation Beijing Institute of TechnologyBeijing 100081China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of AutomationChinese Academy of SciencesBeijing 100190 School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049 Beijing Huairou Academy of Parallel Sensing Beijing 101499China School of Mechanical and Aerospace Engineering Nanyang Technological UniversitySingapore 639798Singapore Department of Electrical and Computer Engineering Purdue School of Engineering and TechnologyIndiana University-Purdue University IndianapolisIndianapolisIN 46202 USA Department of Engineering University of CambridgeCB21TN CambridgeU.K. School of Science Computing and Engineering TechnologiesSwinburne University of TechnologyMelbourne VIC 3122Australia State Key Laboratory for Management and Control of Complex Systems Chinese Academy of SciencesBeijing 100190 School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China Dazhou Artificial Intelligence Institute Dazhouand the Faculty of Innovation EngineeringMacao University of Science and TechnologyMacao 999078China
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with *** rise of steam engines and water wheels represented the first gener... 详细信息
来源: 评论