咨询与建议

限定检索结果

文献类型

  • 1,428 篇 会议
  • 1,082 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 2,514 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,638 篇 工学
    • 1,176 篇 计算机科学与技术...
    • 984 篇 软件工程
    • 351 篇 信息与通信工程
    • 225 篇 控制科学与工程
    • 178 篇 生物工程
    • 170 篇 电气工程
    • 156 篇 机械工程
    • 123 篇 电子科学与技术(可...
    • 118 篇 生物医学工程(可授...
    • 108 篇 光学工程
    • 83 篇 化学工程与技术
    • 70 篇 仪器科学与技术
    • 54 篇 动力工程及工程热...
    • 50 篇 材料科学与工程(可...
    • 46 篇 交通运输工程
    • 39 篇 网络空间安全
    • 32 篇 建筑学
  • 859 篇 理学
    • 486 篇 数学
    • 224 篇 物理学
    • 205 篇 生物学
    • 154 篇 统计学(可授理学、...
    • 79 篇 化学
    • 61 篇 系统科学
  • 462 篇 管理学
    • 256 篇 图书情报与档案管...
    • 219 篇 管理科学与工程(可...
    • 69 篇 工商管理
  • 88 篇 医学
    • 77 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 44 篇 法学
    • 34 篇 社会学
  • 35 篇 农学
  • 27 篇 经济学
  • 14 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 9 篇 文学
  • 5 篇 军事学

主题

  • 114 篇 feature extracti...
  • 77 篇 semantics
  • 73 篇 information proc...
  • 72 篇 training
  • 70 篇 laboratories
  • 55 篇 computers
  • 53 篇 face recognition
  • 48 篇 computational mo...
  • 47 篇 deep learning
  • 43 篇 visualization
  • 39 篇 data mining
  • 39 篇 humans
  • 38 篇 machine learning
  • 38 篇 accuracy
  • 36 篇 predictive model...
  • 36 篇 robustness
  • 34 篇 clustering algor...
  • 33 篇 image segmentati...
  • 33 篇 computer vision
  • 31 篇 support vector m...

机构

  • 439 篇 key laboratory o...
  • 222 篇 university of ch...
  • 83 篇 key laboratory o...
  • 64 篇 peng cheng labor...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 46 篇 the key laborato...
  • 45 篇 school of comput...
  • 44 篇 graduate univers...
  • 40 篇 chinese academy ...
  • 35 篇 national enginee...
  • 32 篇 school of comput...
  • 31 篇 school of inform...
  • 30 篇 graduate univers...
  • 29 篇 school of cyber ...
  • 26 篇 key laboratory o...
  • 26 篇 school of comput...
  • 25 篇 guangdong labora...
  • 25 篇 college of infor...
  • 24 篇 faculty of infor...

作者

  • 101 篇 zhongzhi shi
  • 95 篇 shi zhongzhi
  • 73 篇 xilin chen
  • 72 篇 shiguang shan
  • 62 篇 liu qun
  • 61 篇 huang qingming
  • 42 篇 xu qianqian
  • 42 篇 feng yang
  • 37 篇 he qing
  • 33 篇 wen gao
  • 31 篇 qing he
  • 29 篇 liu yang
  • 29 篇 li hua
  • 28 篇 zhuang fuzhen
  • 27 篇 yang zhiyong
  • 27 篇 yuefei sui
  • 26 篇 fuji ren
  • 25 篇 cao xiaochun
  • 24 篇 cao cungen
  • 24 篇 ding shifei

语言

  • 2,279 篇 英文
  • 182 篇 其他
  • 57 篇 中文
检索条件"机构=Laboratory of Intelligent Information ProcessingInstitute of Computing Technology"
2514 条 记 录,以下是2221-2230 订阅
排序:
Machine learning as Granular computing
Machine learning as Granular Computing
收藏 引用
IEEE International Conference on Granular computing (GRC)
作者: Hong Hu Zhongzhi Shi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences China
Zadeh proposed that there are three basic concepts that underlie human cognition: granulation, organization and causation and a granule being a clump of points (objects) drawn together by indistinguishability, similar... 详细信息
来源: 评论
Active Learning of Instance-Level Constraints for Semi-supervised Document Clustering
Active Learning of Instance-Level Constraints for Semi-super...
收藏 引用
IEEE WIC ACM International Conference on Web Intelligence (WI)
作者: Weizhong Zhao Qing He Huifang Ma Zhongzhi Shi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences Beijing China
This paper presents a framework that actively selects informative documents pairs for semi-supervised document clustering. The semi-supervised document clustering algorithm is a Constrained DBSCAN (Cons-DBSCAN), which... 详细信息
来源: 评论
Improving tree-to-tree translation with packed forests  09
Improving tree-to-tree translation with packed forests
收藏 引用
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2
作者: Yang Liu Yajuan Lü Qun Liu Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
Current tree-to-tree models suffer from parsing errors as they usually use only 1-best parses for rule extraction and decoding. We instead propose a forest-based tree-to-tree model that uses packed forests. The model ...
来源: 评论
Biological-inspired computational modeling of eye-motion control for object detection
Biological-inspired computational modeling of eye-motion con...
收藏 引用
Asian Control Conference
作者: Jun Miao Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences Beijing China
Eye movement plays an important role in human vision system. How to control eye or gaze movement automatically for image understanding is an interesting issue. This paper presents a progress of our research on biologi... 详细信息
来源: 评论
Joint decoding with multiple translation models  09
Joint decoding with multiple translation models
收藏 引用
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2
作者: Yang Liu Haitao Mi Yang Feng Qun Liu Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
Current SMT systems usually decode with single translation models and cannot benefit from the strengths of other models in decoding phase. We instead propose joint decoding, a method that combines multiple translation...
来源: 评论
Image features optimizing for content-based image retrieval
Image features optimizing for content-based image retrieval
收藏 引用
IEEE International Conference on intelligent computing and intelligent Systems (ICIS)
作者: Zhiping Shi Xi Liu Qing He Zhongzhi Shi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences Beijing China
Developing low-dimensional semantics-sensitive features is crucial for content-based image retrieval (CBIR). In this paper, we present a method called M2CLDA (merging 2-class linear discriminant analysis) to capture l... 详细信息
来源: 评论
Automatically Organize Web Text Resources with Frequent Term Tree
Automatically Organize Web Text Resources with Frequent Term...
收藏 引用
International Conference on Computer and information technology (CIT)
作者: Xiaofeng Wang Zhongzhi Shi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Graduate University of the Chinese Academy of Sciences Chinese Academy and Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy and Sciences Beijing China
With the expansion of the Web, automatically organizing large scale text resources, e.g. Web pages, becomes very important. Many Web sites, like Google and Yahoo, use hierarchical classification trees to organize text... 详细信息
来源: 评论
Identifying protein-protein interaction sites using adapted Bayesian classifier
Identifying protein-protein interaction sites using adapted ...
收藏 引用
2009 Second ISECS International Colloquium on computing, Communication, Control, and Management, CCCM 2009
作者: Chishe, Wang Jie, Song Fangping, Li Junsong, Lv School of Information Technology Jinling Institute of Technology Nanjing 211169 China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Anhui University Hefei 230039 China Center of Network University of Science and Technology of China Hefei 230029 China Anhui Statistics Bureau Hefei 230001 China
Identifying protein-protein interaction sites have important connotations ranging from rational drug design to analysis metabolic and signal transduction networks. In this paper, we presented an adapted Bayesian class... 详细信息
来源: 评论
Inductive transfer learning for unlabeled target-domain via hybrid regularization
收藏 引用
Chinese Science Bulletin 2009年 第11期54卷 2470-2478页
作者: ZHUANG FuZhen LUO Ping HE Qing SHI ZhongZhi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China Hewlett Packard Labs China Beijing 100084 China Graduate University of Chinese Academy of Sciences Beijing 100190 China
Recent years have witnessed an increasing interest in transfer learning. This paper deals with the classification problem that the target-domain with a different distribution from the source-domain is totally unlabele... 详细信息
来源: 评论
Face recognition using a hybrid model
Face recognition using a hybrid model
收藏 引用
38th Applied Imagery Pattern Recognition Workshop: Vision: Humans, Animals, and Machines, AIPRW 2009
作者: Wang, Yuheng Anderson, Peter G. Gaborski, Roger S. Golisano College of Computing and Information Sciences Rochester Institute of Technology Rochester NY 14623 United States Computer Science Department Rochester Institute of Technology Rochester NY 14623 United States Computer Science Department Laboratory of Intelligent Systems Rochester Institute of Technology Rochester NY 14623 United States
This paper introduces a hybrid face recognition model that combines biologically inspired features and Local Binary Features. The structure of the model is mainly based on the human visual ventral pathway. Previously,... 详细信息
来源: 评论