咨询与建议

限定检索结果

文献类型

  • 1,428 篇 会议
  • 1,082 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 2,514 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,638 篇 工学
    • 1,176 篇 计算机科学与技术...
    • 984 篇 软件工程
    • 351 篇 信息与通信工程
    • 225 篇 控制科学与工程
    • 178 篇 生物工程
    • 170 篇 电气工程
    • 156 篇 机械工程
    • 123 篇 电子科学与技术(可...
    • 118 篇 生物医学工程(可授...
    • 108 篇 光学工程
    • 83 篇 化学工程与技术
    • 70 篇 仪器科学与技术
    • 54 篇 动力工程及工程热...
    • 50 篇 材料科学与工程(可...
    • 46 篇 交通运输工程
    • 39 篇 网络空间安全
    • 32 篇 建筑学
  • 859 篇 理学
    • 486 篇 数学
    • 224 篇 物理学
    • 205 篇 生物学
    • 154 篇 统计学(可授理学、...
    • 79 篇 化学
    • 61 篇 系统科学
  • 462 篇 管理学
    • 256 篇 图书情报与档案管...
    • 219 篇 管理科学与工程(可...
    • 69 篇 工商管理
  • 88 篇 医学
    • 77 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 44 篇 法学
    • 34 篇 社会学
  • 35 篇 农学
  • 27 篇 经济学
  • 14 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 9 篇 文学
  • 5 篇 军事学

主题

  • 114 篇 feature extracti...
  • 77 篇 semantics
  • 73 篇 information proc...
  • 72 篇 training
  • 70 篇 laboratories
  • 55 篇 computers
  • 53 篇 face recognition
  • 48 篇 computational mo...
  • 47 篇 deep learning
  • 43 篇 visualization
  • 39 篇 data mining
  • 39 篇 humans
  • 38 篇 machine learning
  • 38 篇 accuracy
  • 36 篇 predictive model...
  • 36 篇 robustness
  • 34 篇 clustering algor...
  • 33 篇 image segmentati...
  • 33 篇 computer vision
  • 31 篇 support vector m...

机构

  • 439 篇 key laboratory o...
  • 222 篇 university of ch...
  • 83 篇 key laboratory o...
  • 64 篇 peng cheng labor...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 46 篇 the key laborato...
  • 45 篇 school of comput...
  • 44 篇 graduate univers...
  • 40 篇 chinese academy ...
  • 35 篇 national enginee...
  • 32 篇 school of comput...
  • 31 篇 school of inform...
  • 30 篇 graduate univers...
  • 29 篇 school of cyber ...
  • 26 篇 key laboratory o...
  • 26 篇 school of comput...
  • 25 篇 guangdong labora...
  • 25 篇 college of infor...
  • 24 篇 faculty of infor...

作者

  • 101 篇 zhongzhi shi
  • 95 篇 shi zhongzhi
  • 73 篇 xilin chen
  • 72 篇 shiguang shan
  • 62 篇 liu qun
  • 61 篇 huang qingming
  • 42 篇 xu qianqian
  • 42 篇 feng yang
  • 37 篇 he qing
  • 33 篇 wen gao
  • 31 篇 qing he
  • 29 篇 liu yang
  • 29 篇 li hua
  • 28 篇 zhuang fuzhen
  • 27 篇 yang zhiyong
  • 27 篇 yuefei sui
  • 26 篇 fuji ren
  • 25 篇 cao xiaochun
  • 24 篇 cao cungen
  • 24 篇 ding shifei

语言

  • 2,279 篇 英文
  • 182 篇 其他
  • 57 篇 中文
检索条件"机构=Laboratory of Intelligent Information ProcessingInstitute of Computing Technology"
2514 条 记 录,以下是321-330 订阅
排序:
Key Factor-Based Initialization for 3D Hand Tracking
收藏 引用
Chinese Journal of Electronics 2023年 第4期22卷 751-756页
作者: FENG Zhiquan YANG Bo XU Tao ZHENG Yanwei GAO Jian School of Information Science and Engineering University of Jinun Jinan China Shandong Provincial Key Laboratory of Network based Intelligent Computing Jinan China University of Science and Technology Qingdao China
The discovery of three-dimensional (3D) hand models corresponding to the user's 3D hand pose in initial frames is significant in 3D human hand tracking and interacting. This study proposes an approach to initializ... 详细信息
来源: 评论
Hierarchical Policies of Subgoals for Safe Deep Reinforcement Learning  2nd
Hierarchical Policies of Subgoals for Safe Deep Reinforcem...
收藏 引用
2nd International Conference on Ubiquitous Security, UbiSec 2022
作者: Yu, Fumin Gao, Feng Yuan, Yao Xing, Xiaofei Dai, Yinglong College of Information Science and Engineering Hunan Normal University Changsha410081 China School of Computer Science and Cyber Engineering Guangzhou University Guangzhou510006 China College of Liberal Arts and Sciences National University of Defense Technology Changsha410073 China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Changsha410081 China
Reinforcement learning is a machine learning method that relies on the agent to learn by trial and error to solve decision optimization problems. It is well known that an agent based on deep reinforcement learning in ... 详细信息
来源: 评论
StylizedGS: Controllable Stylization for 3D Gaussian Splatting
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Dingxi Chen, Zhuoxun Yuan, Yu-Jie Zhang, Fang-Lue He, Zhenliang Shan, Shiguang Gao, Lin The University of Chinese Academy of Sciences Beijing China The Beijing Key Laboratory of Mobile Computing and Pervasive Device Institute of Computing Technology Chinese Academy of Sciences Beijing China Victoria University of Wellington New Zealand The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
With the rapid development of XR, 3D generation and editing are becoming more and more important, among which, stylization is an important tool of 3D appearance editing. It can achieve consistent 3D artistic stylizati... 详细信息
来源: 评论
Improving Bert Fine-Tuning via Stabilizing Cross-Layer Mutual information  48
Improving Bert Fine-Tuning via Stabilizing Cross-Layer Mutua...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Li, Jicun Li, Xingjian Wang, Tianyang Wang, Shi Cao, Yanan Xu, Chengzhong Dou, Dejing Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Big Data Lab Baidu Research China University of Alabama Birmingham United States Institute of Information Engineering Chinese Academy of Sciences China State Key Lab of Iotsc University of Macau China
Fine-tuning pre-trained language models, such as BERT, has shown enormous success among various NLP tasks. Though simple and effective, the process of fine-tuning has been found unstable, which often leads to unexpect... 详细信息
来源: 评论
Editing Memories Through Few Targeted Neurons  39
Editing Memories Through Few Targeted Neurons
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zhou, Wei Wei, Wei Cao, Guibang Wang, Fei Cognitive Computing and Intelligent Information Processing (CCIIP) Laboratory School of Computer Science and Technology Huazhong University of Science and Technology China Joint Laboratory of HUST and Pingan Property & Casualty Research (HPL) China Ping An Property & Casualty Insurance Company of China Ltd China Institute of Computing Technology Chinese Academy of Sciences China
Model editing is a novel research topic in large language models (LLMs), aimed at efficiently handling various knowledge editing tasks. Since irrelevant knowledge is difficult to measure, existing editing methods ofte... 详细信息
来源: 评论
Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space  39
Learning with Open-world Noisy Data via Class-independent Ma...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Pan, Linchao Gao, Can Zhou, Jie Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. H... 详细信息
来源: 评论
Image encryption based on 2D-SAHM chaotic system and a novel DNA operation rule
收藏 引用
The European Physical Journal Special Topics 2023年 第6期233卷 1311-1330页
作者: Huang, Lilian Ye, Youxin Liu, Yang College of Information and Communication Engineering Harbin Engineering University Harbin China Key Laboratory of Advanced Marine Communication and Information Technology Harbin Engineering University Ministry of Industry and Information Technology Harbin China National Key Laboratory of Underwater Acoustic Technology Harbin Engineering University Harbin China Sichuan Key Laboratory of Agile Intelligent Computing Southwest China Institute of Electronic Technology Chengdu China
With the continuous development of information technology, ensuring information security has become an important issue. As a widely used multimedia tool, images often face the risk of leakage. Therefore, this paper pr...
来源: 评论
Deep Subdomain Alignment for Cross-domain Image Classification
Deep Subdomain Alignment for Cross-domain Image Classificati...
收藏 引用
IEEE Workshop on Applications of Computer Vision (WACV)
作者: Yewei Zhao Hu Han Shiguang Shan Xilin Chen Key Laboratory of Intelligent Information Processing Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China China University of the Chinese Academy of Sciences Beijing China
Unsupervised domain adaptation (UDA), which aims to transfer knowledge learned from a labeled source domain to an unlabeled target domain, is useful for various cross-domain image classification scenarios. A commonly ...
来源: 评论
Long and Recent Preference Learning with Recent-k Items Distribution for Recommender System
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Gao, Yongbiao Niu, Sijie Lv, Guohua Ling, Miaogen Geng, Xin Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center National Supercomputer Center in Jinan Jinan China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Jinan China Southeast University Ministry of Education Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Application China University of Jinan Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing School of Information Science and Engineering China Nanjing University of Information Science and Technology School of Computer Science China Southeast University School of Computer Science and Engineering China
Reinforcement learning (RL) aims to formulate the recommendation task as a Markov decision process (MDP) and trains an agent to automatically learn the optimal recommendation policy from interaction trajectories throu... 详细信息
来源: 评论
Learning with Open-world Noisy Data via Class-independent Margin in Dual Representation Space
arXiv
收藏 引用
arXiv 2025年
作者: Pan, Linchao Gao, Can Zhou, Jie Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. H... 详细信息
来源: 评论