咨询与建议

限定检索结果

文献类型

  • 1,428 篇 会议
  • 1,082 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 2,514 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,638 篇 工学
    • 1,176 篇 计算机科学与技术...
    • 984 篇 软件工程
    • 351 篇 信息与通信工程
    • 225 篇 控制科学与工程
    • 178 篇 生物工程
    • 170 篇 电气工程
    • 156 篇 机械工程
    • 123 篇 电子科学与技术(可...
    • 118 篇 生物医学工程(可授...
    • 108 篇 光学工程
    • 83 篇 化学工程与技术
    • 70 篇 仪器科学与技术
    • 54 篇 动力工程及工程热...
    • 50 篇 材料科学与工程(可...
    • 46 篇 交通运输工程
    • 39 篇 网络空间安全
    • 32 篇 建筑学
  • 859 篇 理学
    • 486 篇 数学
    • 224 篇 物理学
    • 205 篇 生物学
    • 154 篇 统计学(可授理学、...
    • 79 篇 化学
    • 61 篇 系统科学
  • 462 篇 管理学
    • 256 篇 图书情报与档案管...
    • 219 篇 管理科学与工程(可...
    • 69 篇 工商管理
  • 88 篇 医学
    • 77 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 44 篇 法学
    • 34 篇 社会学
  • 35 篇 农学
  • 27 篇 经济学
  • 14 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 9 篇 文学
  • 5 篇 军事学

主题

  • 114 篇 feature extracti...
  • 77 篇 semantics
  • 73 篇 information proc...
  • 72 篇 training
  • 70 篇 laboratories
  • 55 篇 computers
  • 53 篇 face recognition
  • 48 篇 computational mo...
  • 47 篇 deep learning
  • 43 篇 visualization
  • 39 篇 data mining
  • 39 篇 humans
  • 38 篇 machine learning
  • 38 篇 accuracy
  • 36 篇 predictive model...
  • 36 篇 robustness
  • 34 篇 clustering algor...
  • 33 篇 image segmentati...
  • 33 篇 computer vision
  • 31 篇 support vector m...

机构

  • 439 篇 key laboratory o...
  • 222 篇 university of ch...
  • 83 篇 key laboratory o...
  • 64 篇 peng cheng labor...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 46 篇 the key laborato...
  • 45 篇 school of comput...
  • 44 篇 graduate univers...
  • 40 篇 chinese academy ...
  • 35 篇 national enginee...
  • 32 篇 school of comput...
  • 31 篇 school of inform...
  • 30 篇 graduate univers...
  • 29 篇 school of cyber ...
  • 26 篇 key laboratory o...
  • 26 篇 school of comput...
  • 25 篇 guangdong labora...
  • 25 篇 college of infor...
  • 24 篇 faculty of infor...

作者

  • 101 篇 zhongzhi shi
  • 95 篇 shi zhongzhi
  • 73 篇 xilin chen
  • 72 篇 shiguang shan
  • 62 篇 liu qun
  • 61 篇 huang qingming
  • 42 篇 xu qianqian
  • 42 篇 feng yang
  • 37 篇 he qing
  • 33 篇 wen gao
  • 31 篇 qing he
  • 29 篇 liu yang
  • 29 篇 li hua
  • 28 篇 zhuang fuzhen
  • 27 篇 yang zhiyong
  • 27 篇 yuefei sui
  • 26 篇 fuji ren
  • 25 篇 cao xiaochun
  • 24 篇 cao cungen
  • 24 篇 ding shifei

语言

  • 2,279 篇 英文
  • 182 篇 其他
  • 57 篇 中文
检索条件"机构=Laboratory of Intelligent Information ProcessingInstitute of Computing Technology"
2514 条 记 录,以下是381-390 订阅
排序:
Multimodal Knowledge Graph Embeddings via Lorentz-based Contrastive Learning
Multimodal Knowledge Graph Embeddings via Lorentz-based Cont...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Ruizhou Liu Zongsheng Cao Zhe Wu Qianqian Xu Qingming Huang School of Computer Science and Technology University of Chinese Academy Sciences Beijing China Department of Networked Intelligence Pengcheng Laboratory Shenzhen China Institute of Information Engineering Chinese Academy Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China
Multimodal knowledge graph embeddings (MKGE) have recently garnered significant attention. Unlike traditional unimodal knowledge graph embeddings, MKGE integrates both structural and multimodal knowledge to represent ... 详细信息
来源: 评论
Analysis of Different Methods for Forecasting Transport Carbon Dioxide Emissions in the Philippines
收藏 引用
Transportation Research Procedia 2025年 82卷 3768-3789页
作者: Aaron Michael Salang Virgilio Ma. Ramos Arse John Salison John Justine Villar Intelligent Transportation Systems Laboratory National Center for Transportation Studies University of the Philippines Diliman Quezon City Philippines Department of Logistics and Information Engineering Tokyo University of Marine Science and Technology Tokyo Japan Scientific Computing Laboratory Department of Computer Science University of the Philippines Diliman Quezon City Philippines
Emission forecasts can be an important way of creating awareness among the public and decision-makers on solving environmental problems. The main goal of this study is to forecast and compare the transport CO2 emissio... 详细信息
来源: 评论
SILTD: Structural information for LLM-Generated Text Detection
收藏 引用
International Journal of Machine Learning and Cybernetics 2025年
作者: Yang, Jing Wang, Shi Zi, Kangli Sun, Yanshun Huang, Yuwei Luo, Tianyu Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China
The rapid development of large language models (LLMs) has significantly improved the quality and diversity of AI-generated content(AIGC). LLM-Generated text detection plays an important role in preventing the harmful ... 详细信息
来源: 评论
Wavelet-Driven Masked Image Modeling: A Path to Efficient Visual Representation
arXiv
收藏 引用
arXiv 2025年
作者: Xiang, Wenzhao Liu, Chang Yu, Hongyang Chen, Xilin Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China Peng Cheng Laboratory China University of Chinese Academy of Sciences China Department of Electronic Engineering Shanghai Jiao Tong University China
Masked Image Modeling (MIM) has garnered significant attention in self-supervised learning, thanks to its impressive capacity to learn scalable visual representations tailored for downstream tasks. However, images inh... 详细信息
来源: 评论
Bidirectional Logits Tree: Pursuing Granularity Reconcilement in Fine-Grained Classification  39
Bidirectional Logits Tree: Pursuing Granularity Reconcilemen...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Lu, Zhiguang Xu, Qianqian Bao, Shilong Yang, Zhiyong Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China School of Computer Science and Technology University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management University of Chinese Academy of Sciences China
This paper addresses the challenge of Granularity Competition in fine-grained classification tasks, which arises due to the semantic gap between multi-granularity labels. Existing approaches typically develop independ...
来源: 评论
DeepMesh: A Comprehensive Survey of Deep Learning-Based Routing Performance in Wireless Mesh Networks  18
DeepMesh: A Comprehensive Survey of Deep Learning-Based Rout...
收藏 引用
18th International Conference on intelligent Systems and Knowledge Engineering, ISKE 2023
作者: Xiaoping, Qiu Alam, Md Zahidul Du, Shiling Yue, Zhongjian Wang, Yulan School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu610031 China Tangshan Institute of Southwest Jiaotong University Tangshan063000 China National United Engineering Laboratory of Integrated and Intelligent Transportation Chengdu611756 China Engineering Research Center of Sustainable Urban Intelligent Transportation Ministry of Education Chengdu611756 China Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province Chengdu610031 China Sichuan Institute of Industrial Software Technology Sichuan Chengdu China
This paper provides a analysis of the challenges faced in routing in wireless mesh networks and how deep learning can be used to improve performance. Wireless mesh networks (WMNs) are a particular kind of wireless net... 详细信息
来源: 评论
FUZZY ALIGNMENTS IN DIRECTED ACYCLIC GRAPH FOR NON-AUTOREGRESSIVE MACHINE TRANSLATION
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Zhengrui Shao, Chenze Gui, Shangtong Zhang, Min Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Harbin Institute of Technology Shenzhen China
Non-autoregressive translation (NAT) reduces the decoding latency but suffers from performance degradation due to the multi-modality problem. Recently, the structure of directed acyclic graph has achieved great succes... 详细信息
来源: 评论
Meta-Causal Learning for Single Domain Generalization
Meta-Causal Learning for Single Domain Generalization
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Jin Chen Zhi Gao Xinxiao Wu Jiebo Luo Beijing Key Laboratory of Intelligent Information Technology School of Computer Science & Technology Beijing Institute of Technology China Guangdong Laboratory of Machine Perception and Intelligent Computing Shenzhen MSU-BIT University China Department of Computer Science University of Rochester Rochester NY USA
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains). Existing methods focus on expanding the distribution of t...
来源: 评论
SELF-SUPERVISED DIFFUSION MRI DENOISING VIA ITERATIVE AND STABLE REFINEMENT
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Chenxu Kong, Qingpeng Jiang, Zihang Kevin Zhou, S. School of Biomedical Engineering Division of Life Sciences and Medicine USTC China MIRACLE Center Suzhou Institute for Advance Research USTC China State Key Laboratory of Precision and Intelligent Chemistry USTC China Key Laboratory of Intelligent Information Processing of CAS Institute of Computing Technology CAS China
Magnetic Resonance Imaging (MRI), including diffusion MRI (dMRI), serves as a "microscope" for anatomical structures and routinely mitigates the influence of low signal-to-noise ratio scans by compromising t... 详细信息
来源: 评论
Circular Decomposition and Cross-Modal Recombination for Multimodal Sentiment Analysis
Circular Decomposition and Cross-Modal Recombination for Mul...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Haijian Liang Weicheng Xie Xilin He Siyang Song Linlin Shen School of Computer Science & Software Engineering Computer Vision Institue Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University School of Computing and Mathematical Sciences University of Leicester National Engineering Laboratory for Big Data System Computing Technology Shenzhen University
Multimodal Sentiment Analysis is a burgeoning research area, leveraging various modalities to predict the sentiment score. Nevertheless, previous studies have disregarded the impact of noise interference on specific m...
来源: 评论