咨询与建议

限定检索结果

文献类型

  • 277 篇 会议
  • 198 篇 期刊文献

馆藏范围

  • 475 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 312 篇 工学
    • 227 篇 电气工程
    • 120 篇 动力工程及工程热...
    • 101 篇 计算机科学与技术...
    • 77 篇 软件工程
    • 57 篇 电子科学与技术(可...
    • 55 篇 控制科学与工程
    • 30 篇 信息与通信工程
    • 26 篇 机械工程
    • 19 篇 安全科学与工程
    • 18 篇 化学工程与技术
    • 13 篇 力学(可授工学、理...
    • 13 篇 生物工程
    • 12 篇 材料科学与工程(可...
    • 12 篇 土木工程
    • 11 篇 环境科学与工程(可...
    • 8 篇 仪器科学与技术
    • 8 篇 建筑学
    • 8 篇 水利工程
    • 8 篇 交通运输工程
  • 168 篇 理学
    • 80 篇 数学
    • 55 篇 物理学
    • 22 篇 系统科学
    • 20 篇 统计学(可授理学、...
    • 18 篇 大气科学
    • 16 篇 化学
    • 13 篇 生物学
    • 12 篇 地球物理学
  • 62 篇 管理学
    • 55 篇 管理科学与工程(可...
    • 40 篇 工商管理
  • 35 篇 经济学
    • 35 篇 应用经济学
  • 7 篇 法学
  • 2 篇 医学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 18 篇 wind power gener...
  • 18 篇 power system sta...
  • 14 篇 energy storage
  • 14 篇 renewable energy...
  • 13 篇 costs
  • 11 篇 wind power
  • 11 篇 power grids
  • 11 篇 stability analys...
  • 11 篇 optimization
  • 11 篇 accuracy
  • 10 篇 frequency modula...
  • 10 篇 photovoltaic sys...
  • 9 篇 simulation
  • 9 篇 resource managem...
  • 9 篇 predictive model...
  • 8 篇 wind speed
  • 8 篇 voltage control
  • 8 篇 feature extracti...
  • 7 篇 transient analys...
  • 7 篇 regulation

机构

  • 74 篇 key laboratory o...
  • 37 篇 guangdong provin...
  • 32 篇 key laboratory o...
  • 31 篇 csg key laborato...
  • 31 篇 national energy ...
  • 21 篇 state key labora...
  • 20 篇 key laboratory o...
  • 16 篇 key laboratory o...
  • 14 篇 state key labora...
  • 12 篇 key laboratory o...
  • 11 篇 school of electr...
  • 10 篇 key laboratory o...
  • 10 篇 northeast electr...
  • 9 篇 northeast electr...
  • 9 篇 key laboratory o...
  • 8 篇 national energy ...
  • 8 篇 department of el...
  • 7 篇 electric power r...
  • 7 篇 state key labora...
  • 7 篇 guangdong provin...

作者

  • 35 篇 junhui li
  • 23 篇 cuiping li
  • 18 篇 li junhui
  • 17 篇 huang libin
  • 17 篇 xingxu zhu
  • 17 篇 gangui yan
  • 15 篇 li cuiping
  • 15 篇 zhu yihua
  • 15 篇 yihua zhu
  • 13 篇 yan gangui
  • 13 篇 li yang
  • 13 篇 yang mao
  • 13 篇 guo haiping
  • 12 篇 libin huang
  • 12 篇 lu yuanhong
  • 11 篇 zhang jingyue
  • 11 篇 mao yang
  • 11 篇 zhang jie
  • 11 篇 guo qi
  • 11 篇 liang tu

语言

  • 444 篇 英文
  • 17 篇 其他
  • 13 篇 中文
检索条件"机构=Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology"
475 条 记 录,以下是31-40 订阅
排序:
Deep Learning and Projection Neural Network With Finite-Time Convergence for energy Management of Multi-energy system
收藏 引用
IEEE Transactions on Smart Grid 2025年 第3期16卷 2156-2168页
作者: Liu, Xueying He, Xing Li, Chaojie Huang, Tingwen Southwest University Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing College of Electronic and Information Engineering Chongqing400715 China North China Electric Power University State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources Beijing102206 China Shenzhen University of Advanced Technology Faculty of Computer Science and Control Engineering Shenzhen518055 China
In this paper, an approach based on projection neural network (PNN), sliding mode control technique, and deep learning is proposed to solve the energy management problem of multi-energy systems (MES) containing dynami... 详细信息
来源: 评论
Heterogeneous ensemble short-term integrated load forecasting considering differentiated cycle-trend properties
收藏 引用
Engineering Applications of Artificial Intelligence 2025年 156卷
作者: Huang, Nantian Wang, Yaoyao Li, Bingling Cai, Guowei Zhang, Liang Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Northeast Electric Power University) Ministry of Education Jilin Province Jilin 132012 China
Aiming at the Integrated energy system (IES), there are key problems such as the potential change pattern of seasonal differentiation of multiple loads, the lack of mining complex coupling characteristics, the limited... 详细信息
来源: 评论
A Short-Term power Prediction Method for Wind Farm Cluster Based on Time Dynamic Graph Network and Improved Transformer Model
A Short-Term Power Prediction Method for Wind Farm Cluster B...
收藏 引用
International Russian Smart Industry Conference (SmartIndustryCon)
作者: Chao Han Zihang Chen Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education (Northeast Electric Power University) Jilin China Jiangmen Power Supply Bureau of Guangdong Power Grid Co. Ltd Jiangmen China
In recent years, wind power has gradually replaced thermal power as the main source of new energy generation. Wind power prediction in advance can help formulate scheduling strategies and improve the stability of the ... 详细信息
来源: 评论
Resilient Cooperative control of Multiple DC Microgrids With Interconnection Networks Against Cyber Attacks
IEEE Transactions on Industrial Cyber-Physical Systems
收藏 引用
IEEE Transactions on Industrial Cyber-Physical systems 2025年 3卷 116-126页
作者: Xiao, Feng Liu, Shiyu Wei, Bo Fang, Fang Qin, Jiahu North China Electric Power University State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources Beijing102206 China North China Electric Power University School of Control and Computer Engineering Beijing102206 China North China Electric Power University New Energy Generation National Engineering Research Center Beijing102206 China University of Science and Technology of China Department of Automation Hefei230027 China
The two control objectives of voltage regulation and precise current sharing are conflicting in multi-bus DC microgrids. In this paper, a distributed control strategy is proposed, and it can achieve accurate current s... 详细信息
来源: 评论
FDCA-DSTGCN: A Wind Farm Cluster power Day-ahead Prediction Model Based on Frequency Domain Information Gain and Dynamic Trend Sensing
收藏 引用
IEEE Transactions on Sustainable energy 2025年
作者: Yang, Mao Niu, Jiajun Wang, Bo Huang, Dawei Su, Xin Ma, Chenglian Ministry of Education Northeast Electric Power University Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Jilin132012 China China Electric Power Research Institute State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems Beijing100912 China
Accurate wind farm cluster power prediction (WFCPP) is of vital significance for new power systems with large-scale wind power integration. The current WFCPP modeling method ignores the important role of wind directio... 详细信息
来源: 评论
Multi-Objective Coordination and Stability control of High Proportion Wind power system Based on K-Domain Tuning Damping  19th
Multi-Objective Coordination and Stability Control of High P...
收藏 引用
19th Annual Conference of China Electrotechnical Society, ACCES 2024
作者: Zhang, Qingtao Gao, Diju Zhang, Dan Cai, Haiqing Gu, Haohan Chen, Wei Wu, Wencong Chen, Zhihao Institute of Logistics Engineering Shanghai Maritime University Shanghai China Institute of Logistic Science and Engineering Shanghai Maritime University Shanghai China Guangdong Provincial Key Laboratory of Intelligent Operation and Control for New Energy Power System Guangzhou China State Key Laboratory of HVDC Electric Power Research Institute China Southern Power Grid Guangzhou China National Energy Power Grid Technology R&D Centre Guangzhou China CSG Key Laboratory for Power System Simulation Electric Power Research Institute China Southern Power Grid Guangzhou China
With the further development of "double high" characteristics of power system, the traditional stability problem dominated by synchronous generator has gradually evolved into a new stability problem dominate... 详细信息
来源: 评论
PreAdaptFWI: Pretrained-Based Adaptive Residual Learning for Full-Waveform Inversion Without Dataset Dependency
arXiv
收藏 引用
arXiv 2025年
作者: Dong, Xintong Yuan, Zhengyi Lin, Jun Dong, Shiqi Tong, Xunqian Li, Yue College of Instrumentation and Electrical Engineering Jilin University Changchun130026 China Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology Northeast Electric Power University Jilin132012 China College of Communication Engineering Jilin University Changchun130012 China
Full-waveform inversion (FWI) is a method that utilizes seismic data to invert the physical parameters of subsurface media by minimizing the difference between simulated and observed waveforms. Due to its ill-posed na... 详细信息
来源: 评论
Distributionally robust electricity-carbon collaborative scheduling of integrated energy systems based on refined joint model of heating networks and buildings
收藏 引用
renewable energy 2025年 251卷
作者: Chen, Haipeng Song, Jianzhao Li, Zhiwei Shui, Siyuan Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China Department of Electrical Engineering Northeast Electric Power University Jilin 132012 China School of Automation and Engineering Northeast Electric Power University Jilin 132012 China Northeast Electric Power University Jilin 132012 China
The rapid increase in the grid integration demand of intermittent renewable energy (RE) has raised higher requirements for the flexible regulation and energy storage capacity of integrated energy systems (IES) with co... 详细信息
来源: 评论
The Day-ahead Scenario Generation Method for New energy Based on an Improved Conditional Generative Diffusion Model
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Changgang Liu, Wei Cao, Yu Liang, Dong Li, Yang Mo, Jingshan Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin Province Jilin132012 China School of Electrical Engineering Northeast Electric Power University Jilin Province Jilin132012 China Jilin Power Supply Company Substation Secondary Maintenance Center Jilin Province Jilin132012 China
In the context of the rising share of new energy generation, accurately generating new energy output scenarios is crucial for day-ahead power system scheduling. Deep learning-based scenario generation methods can addr... 详细信息
来源: 评论
Evaluation of Regulating Capacity of power system Nodes and Transmission Lines
Evaluation of Regulating Capacity of Power System Nodes and ...
收藏 引用
Smart Grid and Artificial Intelligence (SGAI), International Conference on
作者: Xiuyu Yang Zekun Fan Almasbek Shakenbek Baoyu Di Chongbi Li Yi Wang Key Laboratory of Modern Power System Simulation Control and New Green Energy Technology of Ministry of Education Northeasst Electric Power University Jilin China State Grid Xinjiang Electric Power Co. Ltd. State Grid Xinjiang Electric Power Co. Ltd. Electric Power Research Institute Urumqi China
The large-scale access of renewable energy to the power grid leads to a sharp increase in the demand for power system regulation capacity. In order to solve this problem, this paper explores the mechanism of supply an... 详细信息
来源: 评论