咨询与建议

限定检索结果

文献类型

  • 59 篇 会议
  • 38 篇 期刊文献

馆藏范围

  • 97 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 65 篇 工学
    • 51 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 机械工程
    • 7 篇 生物工程
    • 5 篇 信息与通信工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
  • 43 篇 理学
    • 31 篇 数学
    • 11 篇 物理学
    • 7 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 14 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 9 篇 graphics process...
  • 3 篇 eigenvalues and ...
  • 3 篇 dae
  • 3 篇 modelica
  • 3 篇 bipartite graph
  • 3 篇 instruction sets
  • 3 篇 kernel
  • 2 篇 parallel algorit...
  • 2 篇 clustering
  • 2 篇 approximate knn
  • 2 篇 indexes
  • 2 篇 memory managemen...
  • 2 篇 sparse matrices
  • 2 篇 arrays
  • 2 篇 性能优化
  • 2 篇 graph neural net...
  • 2 篇 program processo...
  • 2 篇 hungarian algori...
  • 2 篇 bayes methods
  • 2 篇 combinatorial

机构

  • 32 篇 laboratory of pa...
  • 19 篇 university of ch...
  • 12 篇 state key labora...
  • 7 篇 graduate univers...
  • 5 篇 graduate univers...
  • 5 篇 laboratory of pa...
  • 5 篇 laboratory of pa...
  • 5 篇 beijing computat...
  • 5 篇 lab. of parallel...
  • 5 篇 state key labora...
  • 4 篇 institute of com...
  • 4 篇 laboratory of pa...
  • 3 篇 state key labora...
  • 3 篇 laboratory of pa...
  • 3 篇 中国科学院软件研...
  • 3 篇 state key labora...
  • 3 篇 中国海洋大学
  • 3 篇 laboratory of pa...
  • 3 篇 school of comput...
  • 2 篇 institute of geo...

作者

  • 11 篇 jianwen cao
  • 10 篇 zhang changyou
  • 10 篇 ma feifei
  • 9 篇 zhang jian
  • 8 篇 zhang yun-quan
  • 7 篇 yunquan zhang
  • 7 篇 huang pei
  • 7 篇 long guoping
  • 6 篇 zhang yunquan
  • 6 篇 feifei ma
  • 6 篇 张云泉
  • 6 篇 li huiyuan
  • 6 篇 du changying
  • 5 篇 xuesong wu
  • 5 篇 long guo-ping
  • 5 篇 yuan liang
  • 4 篇 pei huang
  • 4 篇 bo wen
  • 4 篇 liu minghao
  • 4 篇 deng pan

语言

  • 84 篇 英文
  • 11 篇 中文
  • 2 篇 其他
检索条件"机构=Laboratory of Parallel Software and Computational Science"
97 条 记 录,以下是31-40 订阅
排序:
A prompt-based approach to adversarial example generation and robustness enhancement
收藏 引用
Frontiers of Computer science 2024年 第4期18卷 85-96页
作者: Yuting YANG Pei HUANG Juan CAO Jintao LI Yun LIN Feifei MA Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing TechnologyCASBeijing 100190China School of Computer Science and Technology University of Chinese Academy of SciencesBeijing 100049China Department of Computer Science Stanford UniversityCA 94305USA School of Computing National University of SingaporeSingapore 119077Singapore Laboratory of Parallel Software and Computational Science Institute of SoftwareChinese Academy of SciencesBeijing 100190China
Recent years have seen the wide application of natural language processing(NLP)models in crucial areas such as finance,medical treatment,and news media,raising concerns about the model robustness and *** find that pro... 详细信息
来源: 评论
A new probabilistic algorithm for approximate model counting and extensions for numeric domains  2
A new probabilistic algorithm for approximate model counting...
收藏 引用
2nd Workshop on Logics for Reasoning about Preferences, Uncertainty, and Vagueness, PRUV 2018
作者: Ge, Cunjing Ma, Feifei Liu, Tian Zhang, Jian Ma, Xutong State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences China Laboratory of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences China University of Chinese Academy of Sciences China School of Electronics Engineering and Computer Science Peking University China Technology Center of Software Engineering Institute of Software Chinese Academy of Sciences China
Constrained counting is important in domains ranging from artificial intelligence to software analysis. There are already a few approaches for counting models over various types of constraints. Recently, hashing-based...
来源: 评论
Sleep scheduling method based on half-sleep state in the distributed sensor network  9
Sleep scheduling method based on half-sleep state in the dis...
收藏 引用
9th International ICST Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, TridentCom 2014
作者: Deng, Pan Chen, Feng Yan, Biying Zhang, Jianwei Zhao, Long Wan, Jiafu Lab. of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences Beijing China State Key Laboratory of Software Development Environment Beihang University Beijing China College of Electrical Engineering and Automation Jiangxi University of Science and Technology Ganzhou China
In order to extend the sensor’s lifetime, this paper researched deeply into the sleep scheduling mechanism in the distributed sensor network. Now, the commonly used sleep scheduling methods based on the coverage have... 详细信息
来源: 评论
A BPEL-based web service flow engine in the early warning of the volcano effusion  4th
A BPEL-based web service flow engine in the early warning of...
收藏 引用
4th International Conference on Cloud Computing, CloudComp 2013
作者: Pang, Jingyuan Wang, Chen Deng, Pan Lu, Yanhong Liu, Hao Earthquake Administration of Jilin Province Changchun30117 China Institute of Geophysics China Earthquake Administration Beijing China Laboratory of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences Beijing100190 China
Web service flow engine is the core of the service assembling and cooperating system in volcano early warning data-shared platform. We design and realize a lightweight web service flow based on BPEL standard. It takes... 详细信息
来源: 评论
Online Bayesian max-margin subspace multi-view learning  25
Online Bayesian max-margin subspace multi-view learning
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: He, Jia Du, Changying Zhuang, Fuzhen Yin, Xin He, Qing Long, Guoping Institute of Computing Technology CAS Beijing100190 China Laboratory of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
Last decades have witnessed a number of studies devoted to multi-view learning algorithms, however, few efforts have been made to handle online multi-view learning scenarios. In this paper, we propose an online Bayesi... 详细信息
来源: 评论
Multi-mode network analysis under differential privacy
Multi-mode network analysis under differential privacy
收藏 引用
2021 Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence and Big Data Forum, AIBDF 2021
作者: Song, Yuning Ding, Liping Dong, Mengying Liu, Xuehua Wang, Xiao Laboratory of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences Beijing100190 China Guangzhou511458 China State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China
With the advent of the big data era and the advancement of social network analysis, the public is increasingly concerned about the privacy protection in today's complex social networks. For the past few years, the... 详细信息
来源: 评论
Learning beyond predefined label space via bayesian nonparametric topic modelling  1
收藏 引用
15th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2016
作者: Du, Changying Zhuang, Fuzhen He, Jia He, Qing Long, Guoping Institute of Computing Technology CAS Beijing100190 China Laboratory of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
In real world machine learning applications, testing data may contain some meaningful new categories that have not been seen in labeled training data. To simultaneously recognize new data categories and assign most ap... 详细信息
来源: 评论
CLSIFT: An optimization study of the scale invariance feature transform on GPUs
CLSIFT: An optimization study of the scale invariance featur...
收藏 引用
15th IEEE International Conference on High Performance Computing and Communications, HPCC 2013 and 11th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, EUC 2013
作者: Wang, Weiyan Zhang, Yunquan Guoping, Long Yan, Shengen Jia, Haipeng Lab. of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences China State Key Laboratory of Computing Science Institute of Software Chinese Academy of Sciences China School of Computer and Control Engineering University of Chinese Academy of Sciences Beijing China
Scale Invariance Feature Transform (SIFT) is quite suitable for image matching because of its invariance to image scaling, rotation and slight changes in illumination or viewpoint. However, due to high computation com... 详细信息
来源: 评论
Modeling the locality in graph traversals
Modeling the locality in graph traversals
收藏 引用
41st International Conference on parallel Processing, ICPP 2012
作者: Yuan, Liang Ding, Chen Štefankovič, Daniel Zhang, Yunquan Lab. of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences China State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences China Graduate University of Chinese Academy of Sciences China Computer Science Department University of Rochester United States
An increasing number of applications in physical and social sciences require the analysis of large graphs. The efficiency of these programs strongly depends on their memory usage especially the locality of graph data ... 详细信息
来源: 评论
A capability-based matchmaking mechanism supporting resource aggregation within large-scale distributed computing infrastructures  4th
A capability-based matchmaking mechanism supporting resource...
收藏 引用
4th International Conference on Cloud Computing, CloudComp 2013
作者: Liang, Feng Liu, Hai Liu, Yunzhen Ma, Shilong Zheng, Siyao Deng, Pan State Key Lab of Software Development Environment Beihang University Beijing100191 China The Laboratory of Embedded Systems Beihang University Beijing100191 China Lab of Parallel Software and Computational Science Institute of Software Chinese Academy of Sciences Beijing100190 China
Facing the large-scale, heterogeneous dynamic resource and the complex constraints of computation-intensive parallel scientific applications, collaborating large-scale computation resource for these applications withi... 详细信息
来源: 评论