咨询与建议

限定检索结果

文献类型

  • 357 篇 会议
  • 161 篇 期刊文献

馆藏范围

  • 518 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 320 篇 工学
    • 203 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 81 篇 信息与通信工程
    • 58 篇 控制科学与工程
    • 56 篇 光学工程
    • 42 篇 生物医学工程(可授...
    • 40 篇 电子科学与技术(可...
    • 37 篇 生物工程
    • 32 篇 机械工程
    • 29 篇 电气工程
    • 23 篇 化学工程与技术
    • 17 篇 仪器科学与技术
    • 10 篇 交通运输工程
    • 9 篇 力学(可授工学、理...
    • 8 篇 航空宇航科学与技...
    • 7 篇 建筑学
    • 7 篇 土木工程
  • 200 篇 理学
    • 114 篇 数学
    • 74 篇 物理学
    • 45 篇 生物学
    • 42 篇 统计学(可授理学、...
    • 23 篇 化学
    • 15 篇 系统科学
  • 72 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 29 篇 医学
    • 23 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 5 篇 经济学
  • 4 篇 法学
  • 3 篇 农学
  • 3 篇 军事学
  • 2 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 45 篇 feature extracti...
  • 38 篇 image processing
  • 37 篇 pattern recognit...
  • 31 篇 image segmentati...
  • 20 篇 support vector m...
  • 18 篇 laboratories
  • 16 篇 computer vision
  • 16 篇 training
  • 15 篇 object detection
  • 15 篇 principal compon...
  • 14 篇 image analysis
  • 13 篇 histograms
  • 13 篇 image reconstruc...
  • 13 篇 shape
  • 12 篇 robustness
  • 11 篇 neural networks
  • 11 篇 discrete wavelet...
  • 11 篇 kernel
  • 11 篇 artificial intel...
  • 10 篇 convolution

机构

  • 74 篇 image processing...
  • 34 篇 institute of ima...
  • 20 篇 school of inform...
  • 17 篇 key laboratory o...
  • 16 篇 institute for pa...
  • 16 篇 school of softwa...
  • 13 篇 school of comput...
  • 12 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...
  • 7 篇 institute of pat...
  • 7 篇 institute of ima...
  • 6 篇 pattern recognit...
  • 6 篇 institute of ima...
  • 6 篇 state education ...
  • 6 篇 institute of ima...
  • 5 篇 university of ch...
  • 5 篇 school of mathem...

作者

  • 64 篇 ping guo
  • 34 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 23 篇 huang xiaolin
  • 19 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 11 篇 shen hong-bin
  • 10 篇 he fan
  • 10 篇 qishen li
  • 10 篇 hong-bin shen
  • 9 篇 xin zheng
  • 9 篇 yang yang
  • 9 篇 tian jinwen
  • 9 篇 yin qian
  • 9 篇 mingyue ding

语言

  • 495 篇 英文
  • 16 篇 中文
  • 7 篇 其他
检索条件"机构=Laboratory of Pattern Recognition and Image Processing"
518 条 记 录,以下是141-150 订阅
排序:
Multi-Level Kernel Machine for Scene image Classification
Multi-Level Kernel Machine for Scene Image Classification
收藏 引用
International Conference on Computational Intelligence and Security
作者: Junlin Hu Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Recently, a new representation for recognizing instances and categories of scenes called spatial Principal component analysis of Census Transform histograms (PACT) has shown its excellent performance in the scene imag... 详细信息
来源: 评论
image fusion algorithm using nonsubsampled contourlet transform
Image fusion algorithm using nonsubsampled contourlet transf...
收藏 引用
MIPPR 2007: Multispectral image processing
作者: Yang, Xiao Zhiguo, Cao Kai, Wang Zhengxiang, Xu Institute of Pattern Recognition and Artificial Intelligence State Education Commission Key Laboratory for Image Processing and Intelligent Control Huazhong Uni. of Sci. and Tech. Wuhan 430074 China
In this paper, a pixel-level image fusion algorithm based on Nonsubsampled Contourlet Transform (NSCT) has been proposed. Compared with Contourlet Transform, NSCT is redundant, shift-invariant and more suitable for im... 详细信息
来源: 评论
Edge detection using image feature detector
Edge detection using image feature detector
收藏 引用
International Conference on Signal processing Proceedings (ICSP)
作者: Yang Xuan Liang Dequn Yang Haijun Laboratory of Image Processing and Pattern Recognition Xi'an Jiaotong University Xi'an China
A new edge detection operator based on image features is proposed, which analyzes edges in images for edge features in two dimensions. The local extreme of the operator is created at the edge location and a low value ... 详细信息
来源: 评论
Parallelization and Optimization of Molecular Dynamics Simulation on Many Integrated Core
Parallelization and Optimization of Molecular Dynamics Simul...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Qian Yin Ruiyi Luo Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Molecular dynamics (MD) simulations are useful in various areas. In this paper, we parallelize and optimize the grid-based MD algorithm on Many Integrated Core (MIC) Architecture. To get full play of the hardware and ... 详细信息
来源: 评论
Impulse noise removal in two-dimensional electrophoresis images based on dome recognition  8
Impulse noise removal in two-dimensional electrophoresis ima...
收藏 引用
8th International Conference on BioMedical Engineering and Informatics, BMEI 2015
作者: Ou, Qiaofeng Zhang, Huisheng Li, Lixin Xiong, Bangshu School of Electronic Information Northwestern Polytechnical University Xi'an710072 Hong Kong Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province Nanchang Hangkong University Nanchang330063 China
Two-dimensional gel electrophoresis (2DE) images are often corrupted by impulse noise in broad sense (including various artifacts, such as fingerprints, hairs, gel cracks, strips, water stains, dust and so on). In thi... 详细信息
来源: 评论
A Study of Deep Belief Network Based Chinese Speech Emotion recognition
A Study of Deep Belief Network Based Chinese Speech Emotion ...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Bu Chen Qian Yin Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
This paper presents a deep learning method application to the extraction of emotions included in Chinese speech with a deep belief network (DBN) structure. Eight proper features such as pitch, mel frequency cepstrum c... 详细信息
来源: 评论
Building Extraction Method in Remote Sensing image
Building Extraction Method in Remote Sensing Image
收藏 引用
International Conference on Data processing Techniques and Applications for Cyber-Physical Systems, DPTA 2019
作者: Han, Qinzhe Zheng, Xin Yin, Qian Chen, Ziyi Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China College of Information Science and Technology University parkPA United States Beijing Normal University Beijing China
Identifying buildings in disaster areas quickly and conveniently plays an important role in post-disaster reconstruction and disaster assessment. Aiming at the technical requirements of earthquake relief projects, thi... 详细信息
来源: 评论
Complete Two-Dimensional PCA for Face recognition
Complete Two-Dimensional PCA for Face Recognition
收藏 引用
International Conference on pattern recognition
作者: Anbang Xu Xin Jin Yugang Jiang Ping Guo Image Processing & Pattern Recognition Laboratory Beijing Normal University Beijing China
We propose a novel method, the complete two-dimensional principal component analysis (complete 2DPCA), for image features extraction. Compared to the original 2DPCA, complete 2DPCA not only gain a higher recognition r... 详细信息
来源: 评论
Dual-cache Structure Based Large Scale Texture Mapping for Real-time Terrain Rendering
Dual-cache Structure Based Large Scale Texture Mapping for R...
收藏 引用
IEEE Conference on Robotics, Automation and Mechatronics
作者: Dong Tian Xiaodong Wang Xin Zheng Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
There are two key problems in efficient large scale texture mapping for terrain rendering-efficient data organization and real time data updating in memory. In order to solve these problems, in this paper we propose a... 详细信息
来源: 评论
ECoG Analysis with Affinity Propagation Algorithm
ECoG Analysis with Affinity Propagation Algorithm
收藏 引用
International Conference on Natural Computation (ICNC)
作者: Yuan Yuan An-bang Xu Ping Guo Jia-cai Zhang Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Analyzing notor imagery electrocardiogram (ECoG) signal is very challenging for it is hard to set up a classifier based on the labeled ECoG obtained in the first session and apply it to the unlabeled test data obtaine... 详细信息
来源: 评论