咨询与建议

限定检索结果

文献类型

  • 357 篇 会议
  • 159 篇 期刊文献

馆藏范围

  • 516 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 322 篇 工学
    • 201 篇 计算机科学与技术...
    • 177 篇 软件工程
    • 83 篇 信息与通信工程
    • 59 篇 控制科学与工程
    • 58 篇 光学工程
    • 42 篇 生物医学工程(可授...
    • 41 篇 电子科学与技术(可...
    • 37 篇 生物工程
    • 32 篇 机械工程
    • 30 篇 电气工程
    • 23 篇 化学工程与技术
    • 17 篇 仪器科学与技术
    • 10 篇 交通运输工程
    • 9 篇 力学(可授工学、理...
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 8 篇 航空宇航科学与技...
  • 201 篇 理学
    • 113 篇 数学
    • 75 篇 物理学
    • 46 篇 生物学
    • 42 篇 统计学(可授理学、...
    • 23 篇 化学
    • 15 篇 系统科学
  • 73 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 27 篇 医学
    • 23 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 5 篇 经济学
  • 4 篇 法学
  • 3 篇 教育学
  • 3 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 45 篇 feature extracti...
  • 39 篇 image processing
  • 37 篇 pattern recognit...
  • 31 篇 image segmentati...
  • 20 篇 support vector m...
  • 18 篇 laboratories
  • 16 篇 computer vision
  • 16 篇 training
  • 15 篇 object detection
  • 15 篇 principal compon...
  • 14 篇 image analysis
  • 13 篇 histograms
  • 13 篇 image reconstruc...
  • 13 篇 shape
  • 12 篇 robustness
  • 11 篇 neural networks
  • 11 篇 discrete wavelet...
  • 11 篇 convolution
  • 11 篇 kernel
  • 11 篇 artificial intel...

机构

  • 74 篇 image processing...
  • 34 篇 institute of ima...
  • 21 篇 school of inform...
  • 17 篇 key laboratory o...
  • 15 篇 institute for pa...
  • 15 篇 school of softwa...
  • 13 篇 school of comput...
  • 12 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 institute of ima...
  • 9 篇 laboratory of im...
  • 8 篇 key laboratory o...
  • 7 篇 institute of pat...
  • 7 篇 institute of ima...
  • 6 篇 pattern recognit...
  • 6 篇 institute of ima...
  • 6 篇 state education ...
  • 6 篇 institute of ima...
  • 5 篇 university of ch...
  • 5 篇 school of mathem...

作者

  • 64 篇 ping guo
  • 34 篇 yang jie
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 23 篇 huang xiaolin
  • 18 篇 jie yang
  • 14 篇 liu jian
  • 12 篇 ding mingyue
  • 12 篇 zhang tianxu
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 10 篇 he fan
  • 10 篇 qishen li
  • 9 篇 xin zheng
  • 9 篇 fang tao
  • 9 篇 yang yang
  • 9 篇 tian jinwen
  • 9 篇 hong-bin shen
  • 9 篇 yin qian

语言

  • 492 篇 英文
  • 16 篇 中文
  • 8 篇 其他
检索条件"机构=Laboratory of Pattern Recognition and Image Processing"
516 条 记 录,以下是501-510 订阅
排序:
A new spatiotemp oral approach for image analysis. Application to motion detection  6th
收藏 引用
6th International Conference on Computer Analysis of images and patterns, CAIP 1995
作者: Caplier, Alice Luthon, Franck Image Processing and Pattern Recognition Laboratory Grenoble National Polytechnical Institute LTIRF INPG 46 avenue Félix-Viallet Grenoble Cedex38031 France
image sequence analysis involves 3D data. Consequently, we propose a new spatiotemporal global approach for image sequence processing where an image sequence is regarded as a 3D data flow. This approach is illustrated... 详细信息
来源: 评论
Page segmentation using texture discrimination masks
Page segmentation using texture discrimination masks
收藏 引用
IEEE International Conference on image processing
作者: A.K. Jain Y. Zhong Pattern Recognition and Image Processing Laboratory Department of Computer Science Michigan State University East Lansing MI USA
We propose a new texture-based page segmentation algorithm which automatically extracts the text, halftone, and line-drawing regions from input greyscale document images. This approach utilizes a neural network to tra... 详细信息
来源: 评论
A general framework for machine vision: Hierarchical token grouping
A general framework for machine vision: Hierarchical token g...
收藏 引用
1994 International Symposium on Speech, image processing and Neural Networks, ISSIPNN 1994
作者: Huang, Qian Pattern Recognition and Image Processing Laboratory Department of Computer Science Michigan State University East LansingMI48824 United States
While the view of constructive and hierarchical vision prevails, the issues of cooperation and competition among individual modules become crucial. These issues are directly related to one of the most important aspect... 详细信息
来源: 评论
A general framework for machine vision: hierarchical token grouping
A general framework for machine vision: hierarchical token g...
收藏 引用
International Symposium on Speech, image processing and Neural Networks
作者: Qian Huang Pattern Recognition and Image Processing Laboratory Department of Computer Science Michigan State University East Lansing MI USA
While the view of constructive and hierarchical vision prevails, the issues of cooperation and competition among individual modules become crucial. These issues are directly related to one of the most important aspect... 详细信息
来源: 评论
Generalized stochastic tube model: Tracking 3D blood vessels in MR images  12
Generalized stochastic tube model: Tracking 3D blood vessels...
收藏 引用
12th IAPR International Conference on pattern recognition - Conference B: pattern recognition and Neural Networks, ICPR 1994
作者: Huang, Qian Stockman, George C. IBM Research Division Almaden Research Center 650 Harry Road San JoseCA95120-6099 United States Pattern Recognition and Image Processing Laboratory Department of Computer Science Michigan State University East LansingMI48824 United States
This paper addresses the issue of tracking tubular objects, particularly blood vessels from MR images. A model-based approach is adopted. The generalized stochastic tube (GST) model is developed which is an extension ... 详细信息
来源: 评论
Model-based automatic recognition of blood vessels from MR images and its 3D visualization
Model-based automatic recognition of blood vessels from MR i...
收藏 引用
The 1994 1st IEEE International Conference on image processing
作者: Huang, Qian Stockman, G.C. IBM Research Division Almaden Research Center 650 Harry Road San JoseCA95120-6099 United States Pattern Recognition and Image Processing Laboratory Department of Computer Science Michigan State University East LansingMI48824 United States
A model-based approach is used for recognizing arterial blood vessels from MRA volumetric data. The modeling includes (1) a generalized stochastic tube model characterizing the structural properties of the vessels, an... 详细信息
来源: 评论
Voronoi pyramids and Hopfield networks
Voronoi pyramids and Hopfield networks
收藏 引用
International Conference on pattern recognition
作者: H. Bischof E. Bertin P. Bertolino Department f. Pattern Recognition and Image Processing Vienna Austria TIMC-IMAG Laboratory University of Grenoble Grenoble France
Presents an algorithm for image segmentation with irregular pyramids. Instead of starting with the original pixel grid, the authors first apply an adaptive Voronoi tessellation to the image. For irregular pyramid cons... 详细信息
来源: 评论
Generalized stochastic tube model: tracking 3D blood vessels in MR images
Generalized stochastic tube model: tracking 3D blood vessels...
收藏 引用
International Conference on pattern recognition
作者: Qian Huang G.C. Stockman Almaden Research Center San Jose CA USA Pattern Recognition and Image Processing Laboratory Department of Computer Science Michigan State University East Lansing MI USA
This paper addresses the issue of tracking tubular objects, particularly blood vessels from MR images. A model-based approach is adopted. The generalized stochastic tube (GST) model is developed which is an extension ... 详细信息
来源: 评论
Recognizing elongated objects using invariant surface features and matched filters  2
Recognizing elongated objects using invariant surface featur...
收藏 引用
Mathematical Methods in Medical Imaging II 1993
作者: Huang, Qian Stockman, George C. Pattern Recognition and Image Processing Laboratory Department of Computer Science Michigan State University East LansingMI48824 United States
Many biological objects are elongated. This research addresses the issue of recognizing elongated objects from both 2D intensity images and 3D volumes. A mathematical model, called tube model, is developed for this cl... 详细信息
来源: 评论
Motion constraint patterns
Motion constraint patterns
收藏 引用
1993 IEEE Workshop on Qualitative Vision, WQV 1993
作者: Fermüller, Cornelia Computer Vision Laboratory Center for Automation Research University of Maryland College ParkMD20742-3275 United States Department for Pattern Recognition and Image Processing Institute for Automation Technical University Vienna Treitlstraße 3 ViennaA-1040 Austria
The problem of egomotion recovery has been treated by using as input local image motion, with the published algorithms utilizing the geometric constraint relating 2-D local image motion (optical flow, correspondence, ... 详细信息
来源: 评论