咨询与建议

限定检索结果

文献类型

  • 379 篇 会议
  • 258 篇 期刊文献

馆藏范围

  • 637 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 437 篇 工学
    • 269 篇 计算机科学与技术...
    • 232 篇 软件工程
    • 106 篇 信息与通信工程
    • 78 篇 光学工程
    • 64 篇 生物工程
    • 50 篇 控制科学与工程
    • 49 篇 电子科学与技术(可...
    • 42 篇 机械工程
    • 40 篇 生物医学工程(可授...
    • 31 篇 电气工程
    • 27 篇 化学工程与技术
    • 19 篇 仪器科学与技术
    • 18 篇 航空宇航科学与技...
    • 16 篇 土木工程
    • 13 篇 建筑学
    • 11 篇 交通运输工程
    • 9 篇 材料科学与工程(可...
  • 293 篇 理学
    • 147 篇 数学
    • 109 篇 物理学
    • 73 篇 生物学
    • 52 篇 统计学(可授理学、...
    • 25 篇 化学
    • 20 篇 系统科学
  • 88 篇 管理学
    • 45 篇 管理科学与工程(可...
    • 44 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 26 篇 医学
    • 22 篇 临床医学
    • 16 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 10 篇 法学
    • 7 篇 社会学
  • 6 篇 经济学
  • 5 篇 农学
  • 5 篇 军事学
  • 4 篇 教育学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 26 篇 image segmentati...
  • 22 篇 feature extracti...
  • 18 篇 pattern recognit...
  • 18 篇 image processing
  • 17 篇 training
  • 16 篇 convolution
  • 14 篇 face recognition
  • 14 篇 semantics
  • 13 篇 object detection
  • 13 篇 laboratories
  • 12 篇 image reconstruc...
  • 11 篇 computer vision
  • 10 篇 shape
  • 9 篇 deep learning
  • 9 篇 target tracking
  • 9 篇 algorithm design...
  • 9 篇 image classifica...
  • 9 篇 artificial intel...
  • 9 篇 infrared imaging
  • 8 篇 image enhancemen...

机构

  • 27 篇 institute of ima...
  • 20 篇 school of inform...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 institute for pa...
  • 17 篇 anhui province k...
  • 13 篇 school of softwa...
  • 12 篇 national laborat...
  • 11 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 9 篇 national key lab...
  • 9 篇 pattern recognit...
  • 9 篇 institute of ima...
  • 9 篇 institute of pat...
  • 9 篇 state key labora...
  • 9 篇 university of ch...
  • 9 篇 pattern recognit...
  • 8 篇 key laboratory o...
  • 8 篇 college of infor...
  • 8 篇 pattern recognit...

作者

  • 32 篇 zhang tianxu
  • 24 篇 yang jie
  • 17 篇 huang xiaolin
  • 15 篇 zhou jie
  • 15 篇 tian jinwen
  • 14 篇 jie yang
  • 14 篇 tianxu zhang
  • 14 篇 liu jian
  • 13 篇 jinwen tian
  • 13 篇 jian liu
  • 12 篇 ding mingyue
  • 12 篇 li qishen
  • 11 篇 meng fandong
  • 11 篇 shen hong-bin
  • 10 篇 cai chao
  • 10 篇 qishen li
  • 10 篇 ma zhanyu
  • 9 篇 shao zehui
  • 9 篇 yang yang
  • 9 篇 huang zhixiang

语言

  • 606 篇 英文
  • 21 篇 中文
  • 10 篇 其他
检索条件"机构=Laboratory of Pattern Recognition and Intelligent Information Processing"
637 条 记 录,以下是241-250 订阅
排序:
DAmageNet: A universal adversarial dataset
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Sizhe Huang, Xiaolin He, Zhengbao Sun, Chengjin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China
It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in... 详细信息
来源: 评论
A Cellular Ant Colony Algorithm for Path Planning Using Bayesian Posterior Probability
A Cellular Ant Colony Algorithm for Path Planning Using Baye...
收藏 引用
2019 2nd International Conference on Informatics, Control and Automation (ICA 2019)
作者: Xiu-fen WANG Sheng-yi YANG School of data science and Information Engineering Guizhou Minzu University Key Laboratory of Pattern Recognition and Intelligent Systems of Guizhou Province Guizhou Minzu University
In order to solve the problem of slow convergence rate in traditional ant colony algorithm for UAV path planning,a new cellular ant colony algorithm is ***,we construct a sector prediction area in grid environment ***... 详细信息
来源: 评论
Duality-Gated Mutual Condition Network for RGBT Tracking
arXiv
收藏 引用
arXiv 2020年
作者: Lu, Andong Qian, Cun Li, Chenglong Tang, Jin Wang, Liang Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China The National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China
Low-quality modalities contain not only a lot of noisy information but also some discriminative features in RGBT tracking. However, the potentials of low-quality modalities are not well explored in existing RGBT track... 详细信息
来源: 评论
Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset
arXiv
收藏 引用
arXiv 2021年
作者: Qin, Yulei Gu, Yun Zhang, Hanxiao Yang, Jie Wang, Lihui Wang, Zhexin Yao, Feng Zhu, Yue-Min Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China CREATIS INSA Lyon CNRS UMR 5220 INSERM U1206 Université de Lyon Villeurbanne69621 France Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province School of Computer Science and Technology Guizhou University Guiyang550025 China Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai200025 China
Objectives: To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. Materials and Methods: The LID... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
Prediction of σ54 promoters in prokaryotes based on SVM–Adaboost
Prediction of σ54 promoters in prokaryotes based on SVM–Ad...
收藏 引用
Chinese Automation Congress (CAC)
作者: Yongxian Fan Qingqi Zhu Chengwei Lv Xianyong Pan School of Computer and Information Security Guilin University of Electronic Technology Guilin Guangxi Key Laboratory of System Control and Information Processing Ministry of Education of China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
σ 54 promoters are responsible for transcriptional carbon and nitrogen in prokaryotes. However, it is costly and difficult by experimental identification of them, especially in the postgenomic era with avalanche of ... 详细信息
来源: 评论
Oslnet: Deep small-sample classification with an orthogonal softmax layer
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiaoxu Chang, Dongliang Ma, Zhanyu Tan, Zheng-Hua Xue, Jing-Hao Cao, Jie Yu, Jingyi Guo, Jun School of Computer and Communication Lanzhou University of Technology China Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Department of Electronic Systems Aalborg University Denmark Department of Statistical Science University College London United Kingdom School of Information Science and Technology ShanghaiTech University China
A deep neural network of multiple nonlinear layers forms a large function space, which can easily lead to overfitting when it encounters small-sample data. To mitigate overfitting in small-sample classification, learn... 详细信息
来源: 评论
Oracle character recognition by nearest neighbor classification with deep metric learning  15
Oracle character recognition by nearest neighbor classificat...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Zhang, Yi-Kang Zhang, Heng Liu, Yong-Ge Yang, Qing Liu, Cheng-Lin National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun East Road Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Center for Excellence of Brain Science and Intelligence Technology Beijing China School of Computer & Information Engineering Anyang Normal University Henan China Key Laboratory of Oracle Bone Inscriptions Information Processing Ministry of Education Henan China
Oracle character is one kind of the earliest hieroglyphics, which can be dated back to Shang Dynasty in China. Oracle character recognition is important for modern archaeology, ancient text understanding, and historic... 详细信息
来源: 评论
Incremental transformer with deliberation decoder for document grounded conversations
arXiv
收藏 引用
arXiv 2019年
作者: Li, Zekang Niu, Cheng Meng, Fandong Feng, Yang Li, Qian Zhou, Jie Dian Group School of Electronic Information and Communications Huazhong University of Science and Technology Pattern Recognition Center WeChat AI Tencent Inc China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences School of Computer Science and Engineering Northeastern University China
Document Grounded Conversations is a task to generate dialogue responses when chatting about the content of a given document. Obviously, document knowledge plays a critical role in Document Grounded Conversations, whi... 详细信息
来源: 评论
Omni-supervised Facial Expression recognition via Distilled Data
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ping Wei, Yunchao Meng, Zibo Deng, Weihong Zhou, Joey Tianyi Yang, Yi Center for Frontier AI Research Agency for Science Technology and Research Singapore Singapore Institute of information science Beijing Jiaotong University Beijing China Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China InnoPeak Technology Inc. Palo Alto United States
Facial expression plays an important role in understanding human emotions. Most recently, deep learning based methods have shown promising for facial expression recognition. However, the performance of the current sta... 详细信息
来源: 评论