咨询与建议

限定检索结果

文献类型

  • 121 篇 会议
  • 95 篇 期刊文献

馆藏范围

  • 216 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 139 篇 工学
    • 93 篇 计算机科学与技术...
    • 78 篇 软件工程
    • 26 篇 信息与通信工程
    • 26 篇 生物工程
    • 20 篇 控制科学与工程
    • 15 篇 机械工程
    • 15 篇 光学工程
    • 12 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 电气工程
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 船舶与海洋工程
  • 83 篇 理学
    • 30 篇 数学
    • 28 篇 生物学
    • 25 篇 物理学
    • 11 篇 统计学(可授理学、...
    • 9 篇 化学
    • 8 篇 系统科学
  • 47 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 医学
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 19 篇 feature extracti...
  • 14 篇 speech recogniti...
  • 14 篇 training
  • 12 篇 pattern recognit...
  • 12 篇 semantics
  • 9 篇 face recognition
  • 6 篇 deep neural netw...
  • 6 篇 hidden markov mo...
  • 6 篇 data mining
  • 6 篇 machine learning
  • 6 篇 image classifica...
  • 6 篇 computer vision
  • 6 篇 character recogn...
  • 5 篇 robustness
  • 5 篇 intelligent syst...
  • 4 篇 support vector m...
  • 4 篇 deep learning
  • 4 篇 image segmentati...
  • 4 篇 convolution
  • 4 篇 vectors

机构

  • 72 篇 pattern recognit...
  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 10 篇 guizhou key labo...
  • 9 篇 school of comput...
  • 8 篇 pattern recognit...
  • 6 篇 school of comput...
  • 6 篇 pattern recognit...
  • 5 篇 department of st...
  • 4 篇 university of ch...
  • 4 篇 center for resea...
  • 4 篇 beijing universi...
  • 3 篇 pattern recognit...
  • 3 篇 college of physi...
  • 3 篇 oppo research se...
  • 3 篇 shanghai jiao to...
  • 3 篇 department of st...
  • 3 篇 cas center for e...
  • 3 篇 meituan group
  • 3 篇 key laboratory o...

作者

  • 33 篇 guo jun
  • 29 篇 ma zhanyu
  • 29 篇 jun guo
  • 19 篇 gang liu
  • 19 篇 deng weihong
  • 13 篇 honggang zhang
  • 12 篇 liu gang
  • 10 篇 chang dongliang
  • 10 篇 song yi-zhe
  • 9 篇 yang yang
  • 9 篇 li xiaoxu
  • 9 篇 du ruoyi
  • 8 篇 feng fujian
  • 8 篇 liang yihui
  • 8 篇 wang lin
  • 7 篇 zhang honggang
  • 7 篇 wang mei
  • 7 篇 xue jing-hao
  • 6 篇 zhanyu ma
  • 6 篇 wei chen

语言

  • 209 篇 英文
  • 7 篇 中文
  • 2 篇 其他
检索条件"机构=Laboratory of Pattern Recognition and Intelligent System"
216 条 记 录,以下是121-130 订阅
排序:
ANALYSIS AND RESEARCH OF ASSOCIATION pattern BETWEEN NETWORK PERFORMANCES AND FAULTS IN VOIP NETWORK
ANALYSIS AND RESEARCH OF ASSOCIATION PATTERN BETWEEN NETWORK...
收藏 引用
2009 IEEE International Conference on Network Infrastructure and Digital Content(2009年IEEE网络基础设施与数字内容国际会议 IEEE IC-NIDC2009)
作者: Jun Guo Chuanmei Wang Bin Zhang Guohui Li Jin Zhou Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunica IBM China Research Laboratory Beijing University of Posts and Telecommunications Beijing
The paper focuses on implementation of association pattern between the network performances and the general network faults. We use network simulation tool, OPNET, to accomplish network simulations of different network... 详细信息
来源: 评论
Cross-Domain Person Re-identification Combining Feature Concatenation and Attention
Cross-Domain Person Re-identification Combining Feature Conc...
收藏 引用
作者: Feng Pan Lin Wang Yansha Zhang Jie Wang College of Data Science and Information Engineering Guizhou Minzu University Key Laboratory of Pattern Recognition and Intelligent System of Guizhou Province
To improve the insufficient generalization and poor cross-domain capability of the existing direct cross-dataset person re-identification methods,a cross-domain person re-identification method combining feature concat...
来源: 评论
Matching Image with Multiple Local Features
Matching Image with Multiple Local Features
收藏 引用
International Conference on pattern recognition
作者: Yudong Cao Honggang Zhang Yanyan Gao Xiaojun Xu Jun Guo Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China Liaoning University of Technology Jinzhou China
In this paper, we present the fusional feature composed of Affine-SIFT, MSER and color moment invariants. The fusional feature is more robust and distinctive than a single local feature. Instead of adding three local ... 详细信息
来源: 评论
Rapid disparity prediction for dynamic scenes
Rapid disparity prediction for dynamic scenes
收藏 引用
9th International Symposium on Advances in Visual Computing, ISVC 2013
作者: Jiang, Jun Cheng, Jun Chen, Baowen Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong Hong Kong Hong Kong Shsenzhen Institute of Information Technology China Guangdong Provincial Key Laboratory of Robotics and Intelligent System China Shenzhen Key Laboratory of Computer Vision and Pattern Recognition China
Real-time 3D sensing plays a critical role in robotic navigation, video surveillance and human-computer interaction, etc. When computing 3D structures of dynamic scenes from stereo sequences, spatiotemporal stereo and... 详细信息
来源: 评论
Deep facial expression recognition: A survey
arXiv
收藏 引用
arXiv 2018年
作者: Li, Shan Deng, Weihong Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China
With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions and the recent success of deep learning techniques in various fields, deep neural networks ha... 详细信息
来源: 评论
A deeper look at facial expression dataset bias
arXiv
收藏 引用
arXiv 2019年
作者: Li, Shan Deng, Weihong Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China
Datasets play an important role in the progress of facial expression recognition algorithms, but they may suffer from obvious biases caused by different cultures and collection conditions. To look deeper into this bia... 详细信息
来源: 评论
REPRESENTATIVE REFERENCE-SET AND BETWEENNESS CENTRALITY FOR SCENE IMAGE CATEGORIZATION
REPRESENTATIVE REFERENCE-SET AND BETWEENNESS CENTRALITY FOR ...
收藏 引用
IEEE International Conference on Image Processing
作者: Qun Li Zhen Qin Lunshao Chai Honggang Zhang Jim Guo Bir Bhanu Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China University of California Riverside CA USA
Reference-based image classification approach introduces a reference-set for both image representation and dictionary learning. It significantly reduces the dimensionality of represented images and shows outstanding p... 详细信息
来源: 评论
Towards transferable adversarial attack against deep face recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhong, Yaoyao Deng, Weihong Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China
—Face recognition has achieved great success in the last five years due to the development of deep learning methods. However, deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial... 详细信息
来源: 评论
Domain-Oriented Prefix-Tuning: Towards Efficient and Generalizable Fine-tuning for Zero-Shot Dialogue Summarization
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Lulu Zheng, Fujia Zeng, Weihao He, Keqing Xu, Weiran Jiang, Huixing Wu, Wei Wu, Yanan Pattern Recognition & Intelligent System Laboratory China Beijing University of Posts and Telecommunications Beijing China Meituan Group Beijing China
The most advanced abstractive dialogue summarizers lack generalization ability on new domains and the existing researches for domain adaptation in summarization generally rely on large-scale pre-trainings. To explore ... 详细信息
来源: 评论
Smoke Image Segmentation Based on Color Model
Smoke Image Segmentation Based on Color Model
收藏 引用
第11届创新与管理国际学术会议(ICIM2014)
作者: Deng Xing Yu Zhongming Wang Lin Li Jinlan School of Science Guizhou Minzu University Guizhou provincial key laboratory of pattern recognition and intelligent system Liupanshui Normal University
Smoke is the most significant feature in the process of fire,so it's possible to rely on smoke detection to detect *** the smoke image segmentation is the most difficult and also indispensable step in the analysis... 详细信息
来源: 评论