咨询与建议

限定检索结果

文献类型

  • 121 篇 会议
  • 95 篇 期刊文献

馆藏范围

  • 216 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 139 篇 工学
    • 93 篇 计算机科学与技术...
    • 78 篇 软件工程
    • 26 篇 信息与通信工程
    • 26 篇 生物工程
    • 20 篇 控制科学与工程
    • 15 篇 机械工程
    • 15 篇 光学工程
    • 12 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 电气工程
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 4 篇 安全科学与工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 材料科学与工程(可...
    • 2 篇 动力工程及工程热...
    • 2 篇 船舶与海洋工程
  • 83 篇 理学
    • 30 篇 数学
    • 28 篇 生物学
    • 25 篇 物理学
    • 11 篇 统计学(可授理学、...
    • 9 篇 化学
    • 8 篇 系统科学
  • 47 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 4 篇 法学
    • 4 篇 社会学
  • 3 篇 医学
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 19 篇 feature extracti...
  • 14 篇 speech recogniti...
  • 14 篇 training
  • 12 篇 pattern recognit...
  • 12 篇 semantics
  • 9 篇 face recognition
  • 6 篇 deep neural netw...
  • 6 篇 hidden markov mo...
  • 6 篇 data mining
  • 6 篇 machine learning
  • 6 篇 image classifica...
  • 6 篇 computer vision
  • 6 篇 character recogn...
  • 5 篇 robustness
  • 5 篇 intelligent syst...
  • 4 篇 support vector m...
  • 4 篇 deep learning
  • 4 篇 image segmentati...
  • 4 篇 convolution
  • 4 篇 vectors

机构

  • 72 篇 pattern recognit...
  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 10 篇 guizhou key labo...
  • 9 篇 school of comput...
  • 8 篇 pattern recognit...
  • 6 篇 school of comput...
  • 6 篇 pattern recognit...
  • 5 篇 department of st...
  • 4 篇 university of ch...
  • 4 篇 center for resea...
  • 4 篇 beijing universi...
  • 3 篇 pattern recognit...
  • 3 篇 college of physi...
  • 3 篇 oppo research se...
  • 3 篇 shanghai jiao to...
  • 3 篇 department of st...
  • 3 篇 cas center for e...
  • 3 篇 meituan group
  • 3 篇 key laboratory o...

作者

  • 33 篇 guo jun
  • 29 篇 ma zhanyu
  • 29 篇 jun guo
  • 19 篇 gang liu
  • 19 篇 deng weihong
  • 13 篇 honggang zhang
  • 12 篇 liu gang
  • 10 篇 chang dongliang
  • 10 篇 song yi-zhe
  • 9 篇 yang yang
  • 9 篇 li xiaoxu
  • 9 篇 du ruoyi
  • 8 篇 feng fujian
  • 8 篇 liang yihui
  • 8 篇 wang lin
  • 7 篇 zhang honggang
  • 7 篇 wang mei
  • 7 篇 xue jing-hao
  • 6 篇 zhanyu ma
  • 6 篇 wei chen

语言

  • 209 篇 英文
  • 7 篇 中文
  • 2 篇 其他
检索条件"机构=Laboratory of Pattern Recognition and Intelligent System"
216 条 记 录,以下是21-30 订阅
排序:
Cross similarity measurement for speaker adaptive test normalization in text-independent speaker verification
收藏 引用
The Journal of China Universities of Posts and Telecommunications 2008年 第2期15卷 130-134页
作者: ZHAO Jian DONG Yuan ZHAO Xian-yu YANG Hao WANG Hai-la Laboratory of Pattern Recognition and Intelligent System Beijing Universityof Posts and Telecommunications Beijing 100876 China France Telecom Research and Development Center Beijing 100080 China
Speaker adaptive test normalization (ATnorm) is the most effective approach of the widely used score normalization in text-flldependent speaker verification, which selects speaker adaptive impostor cohorts with an e... 详细信息
来源: 评论
Multi-class classifier of non-speech audio based on Fisher kernel
收藏 引用
Frontiers of Electrical and Electronic Engineering in China 2010年 第1期5卷 72-76页
作者: Rongyan WANG Gang LIU Jun GUO Yu FANG Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and TelecommunicationsBeijing 100876China
Traditional multi-class classification methods based on Fisher kernel combine generative models such as Gaussian mixture models(GMMs)of all the classes ***,the combination generates high dimensional feature vectors an... 详细信息
来源: 评论
Speech enhancement based on modified a priori SNR estimation
收藏 引用
Frontiers of Electrical and Electronic Engineering in China 2011年 第4期6卷 542-546页
作者: Yu FANG Gang LIU Jun GUO Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and TelecommunicationsBeijing 100876China
To solve the frame delay problem and match the previous frame,Plapous et al.[IEEE Transactions on Audio,Speech,and Language Processing,2006,14(6):2098–2108]introduced a novel approach called two-step noise reduction(... 详细信息
来源: 评论
Learning Discriminative Representations for Open Relation Extraction with Instance Ranking and Label Calibration
Learning Discriminative Representations for Open Relation Ex...
收藏 引用
2022 Findings of the Association for Computational Linguistics: NAACL 2022
作者: Wang, Shusen Duan, Bin Wu, Yanan Xu, Yajing Pattern Recognition & Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Open relation extraction is the task to extract relational facts without pre-defined relation types from open-domain corpora. However, since there are some hard or semi-hard instances sharing similar context and entit... 详细信息
来源: 评论
RCL: Relation Contrastive Learning for Zero-Shot Relation Extraction
RCL: Relation Contrastive Learning for Zero-Shot Relation Ex...
收藏 引用
2022 Findings of the Association for Computational Linguistics: NAACL 2022
作者: Wang, Shusen Zhang, Bosen Xu, Yajing Wu, Yanan Xiao, Bo Pattern Recognition & Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Zero-shot relation extraction aims to identify novel relations which cannot be observed at the training stage. However, it still faces some challenges since the unseen relations of instances are similar or the input s... 详细信息
来源: 评论
Novel active learning sample evaluation method based on multi-level confusion networks
Novel active learning sample evaluation method based on mult...
收藏 引用
2010 2nd IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2010
作者: Chen, Wei Liu, Gang Guo, Jun Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Active Learning (AL) is designed to aid the labor-intensive process of training acoustic model for speech recognition. In AL, only the most informative training samples are selected for manual annotation. Thus, how to... 详细信息
来源: 评论
Cluster-aware Pseudo-Labeling for Supervised Open Relation Extraction  29
Cluster-aware Pseudo-Labeling for Supervised Open Relation E...
收藏 引用
29th International Conference on Computational Linguistics, COLING 2022
作者: Duan, Bin Wang, Shusen Liu, Xingxian Xu, Yajing Pattern Recognition & Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Supervised open relation extraction aims to discover novel relations by leveraging supervised data of pre-defined relations. However, most existing methods do not achieve effective knowledge transfer from pre-defined ... 详细信息
来源: 评论
A visualization algorithm for alarm association mining
A visualization algorithm for alarm association mining
收藏 引用
2009 IEEE International Conference on Network Infrastructure and Digital Content, IEEE IC-NIDC2009
作者: Xu, Qianfang Li, Chunguang Xiao, Bo Guo, Jun Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Currently those algorithms to mine the alarm association rules are limited to the minimal support, so that they can only obtain the association rules among the frequently occurring alarm events, furthermore, the rules... 详细信息
来源: 评论
Semi-supervised learning for automatic audio events annotation using TSVM
Semi-supervised learning for automatic audio events annotati...
收藏 引用
2010 International Conference on Computer Application and system Modeling, ICCASM 2010
作者: Wang, Rongyan Liu, Gang Guo, Jun Ma, Zhenxin Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing 100876 China
Most previous approaches to automatic audio events (AEs) annotation are based on supervised learning which relies on the availability of a labeled corpus to train classification models. However, instance annotation is... 详细信息
来源: 评论
Sparse feature representation for visual tracking
Sparse feature representation for visual tracking
收藏 引用
2012 International Conference on systems and Informatics, ICSAI 2012
作者: Liu, Yifei Han, Zhenjun Ye, Qixiang Jiao, Jianbin Li, Ce Pattern Recognition and Intelligent System Development Laboratory Graduate University Chinese Academy of Sciences Beijing China
In this paper, a novel sparse feature representation method for object tracking is proposed. The method is on the observation that a tracked object can be dynamically and compactly represented by a few features (spars... 详细信息
来源: 评论