咨询与建议

限定检索结果

文献类型

  • 293 篇 期刊文献
  • 228 篇 会议

馆藏范围

  • 521 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 329 篇 工学
    • 231 篇 计算机科学与技术...
    • 194 篇 软件工程
    • 63 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 46 篇 电气工程
    • 46 篇 生物工程
    • 27 篇 电子科学与技术(可...
    • 27 篇 生物医学工程(可授...
    • 23 篇 光学工程
    • 21 篇 交通运输工程
    • 16 篇 机械工程
    • 15 篇 化学工程与技术
    • 14 篇 动力工程及工程热...
    • 12 篇 安全科学与工程
    • 10 篇 土木工程
    • 9 篇 建筑学
  • 193 篇 理学
    • 97 篇 数学
    • 57 篇 生物学
    • 36 篇 物理学
    • 27 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 化学
  • 107 篇 管理学
    • 65 篇 管理科学与工程(可...
    • 43 篇 图书情报与档案管...
    • 30 篇 工商管理
  • 41 篇 医学
    • 32 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 19 篇 法学
    • 16 篇 社会学
  • 14 篇 农学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 15 篇 training
  • 13 篇 semantics
  • 12 篇 accuracy
  • 11 篇 deep learning
  • 11 篇 feature extracti...
  • 9 篇 task analysis
  • 9 篇 convolution
  • 9 篇 computational mo...
  • 9 篇 costs
  • 9 篇 machine learning
  • 9 篇 data models
  • 7 篇 three-dimensiona...
  • 7 篇 optimization
  • 7 篇 decision making
  • 7 篇 federated learni...
  • 7 篇 forecasting
  • 7 篇 adaptation model...
  • 6 篇 transformers
  • 6 篇 big data
  • 6 篇 data mining

机构

  • 38 篇 laboratory for b...
  • 25 篇 shenzhen researc...
  • 21 篇 school of comput...
  • 19 篇 college of syste...
  • 18 篇 national univers...
  • 17 篇 beijing advanced...
  • 16 篇 national key lab...
  • 16 篇 state key labora...
  • 12 篇 science and tech...
  • 12 篇 peng cheng labor...
  • 11 篇 beijing advanced...
  • 11 篇 state key labora...
  • 11 篇 intelligent inte...
  • 9 篇 key laboratory o...
  • 8 篇 state key labora...
  • 8 篇 big data researc...
  • 8 篇 state key labora...
  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 7 篇 national univers...

作者

  • 15 篇 zhao xiang
  • 10 篇 zhao zhang
  • 9 篇 miao qiguang
  • 7 篇 meng wang
  • 7 篇 yang shenghao
  • 7 篇 tan zhen
  • 7 篇 zhu guangxu
  • 7 篇 lu feng
  • 6 篇 haijun zhang
  • 6 篇 xiang zhao
  • 6 篇 luonan chen
  • 6 篇 luo zhi-quan
  • 6 篇 yang li
  • 6 篇 liu ya-feng
  • 6 篇 tian daxin
  • 6 篇 li jia
  • 5 篇 chen wei-kun
  • 5 篇 li yang
  • 5 篇 feng guanwen
  • 5 篇 liu xin

语言

  • 471 篇 英文
  • 40 篇 其他
  • 11 篇 中文
检索条件"机构=Laboratory of Technology of Big Data and Socialcyberphysical Systems"
521 条 记 录,以下是21-30 订阅
排序:
Analysis of Network State by RIPE Atlas Distributed Measurement System  26
Analysis of Network State by RIPE Atlas Distributed Measurem...
收藏 引用
26th International Conference on Digital Signal Processing and its Applications, DSPA 2024
作者: Izyumov, Pavel S. Ivchenko, Alexander V. Moscow Institute of Physics and Technology Dolgoprudny Department of Multimedia Technologies and Telecommunications Russia Laboratory of Big Data and Information Systems Keldysh Institute of Applied Mathematics Moscow Russia
The paper describes the issues of setting up an experiment, limitations, and features of the platform, primarily focusing on the influence of hardware and software versions of probes, network types, and cross-traffic.... 详细信息
来源: 评论
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
收藏 引用
Computers, Materials & Continua 2025年 第3期82卷 5387-5405页
作者: Hao Li Kuan Shao Xin Wang Mufeng Wang Zhenyong Zhang The State Key Laboratory of Public Big Data College of Computer Science and TechnologyGuizhou UniversityGuiyang550025China Key Laboratory of Computing Power Network and Information Security Ministry of EducationShandong Computer Science CenterQilu University of Technology(Shandong Academy of Sciences)Jinan250014China China Industrial Control Systems Cyber Emergency Response Team Beijing100040China
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model ***,dishonest clouds may infer user data,resulting in user data *** schemes have achie... 详细信息
来源: 评论
Discovering Frequency Bursting Patterns in Temporal Graphs  39
Discovering Frequency Bursting Patterns in Temporal Graphs
收藏 引用
39th IEEE International Conference on data Engineering, ICDE 2023
作者: Zhang, Qianzhen Guo, Deke Zhao, Xiang Yuan, Long Luo, Lailong National University of Defense Technology Science and Technology on Information Systems Engineering Laboratory China National University of Defense Technology Laboratory for Big Data and Decision China Nanjing University of Science and Technology China
A frequency bursting pattern (FBP) in temporal graphs represents some interaction behavior that accumulates its frequency at the fastest rate. Mining FBPs is essential to early warning of emergencies. However, existin... 详细信息
来源: 评论
Backtracing Social Events of Interest via Logical Correlation Using GDELT  9
Backtracing Social Events of Interest via Logical Correlatio...
收藏 引用
9th International Conference on big data and Information Analytics, bigDIA 2023
作者: Zhao, Dongxu Zhang, Xin Pan, Yan Shi, Honglin Qian, Liwei Yang, Guang National University of Defense Technology Science and Technology on Information Systems Engineering Laboratory Changsha China National University of Defense Technology Laboratory for Big Data and Decision Changsha China National University of Defense Technology College of Systems Engineering Changsha China
In response to the inability of mainstream methods in existing social event backtracing studies to address the logical correlation problem, the insufficient and inaccurate utilization of event characteristics for impl... 详细信息
来源: 评论
Analysis of Factors Influencing Driver Lane-Changing Intentions Based on a Naturalistic Trajectory data Set on Highways  24
Analysis of Factors Influencing Driver Lane-Changing Intenti...
收藏 引用
24th COTA International Conference of Transportation Professionals: Resilient, Intelligent, Connected, and Lowcarbon Multimodal Transportation, CICTP 2024
作者: Wang, Guangchen Lu, Guangquan Wang, Jinghua Liu, Miaomiao School of Transportation Science and Engineering Beihang Univ. Beijing China Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control National Engineering Laboratory for Comprehensive Transportation Big Data Application Technology Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang Univ. Beijing China
Accurately analyzing and predicting driver lane-changing intentions is of paramount importance, as it significantly enhances the safety of self-driving vehicles in their decision-making processes, holding great promis... 详细信息
来源: 评论
Federated Intelligence for Intelligent Vehicles
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 第5期9卷 1-5页
作者: Zhang, Weishan Zhang, Baoyu Jia, Xiaofeng Qi, Hongwei Qin, Rui Li, Juanjuan Tian, Yonglin Liang, Xiaolong Wang, Fei-Yue School of China University of Petroleum Qingdao China Department of Data Management Big Data Centre Beijing Beijing China Technology Company Beijing China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China Faculty of Innovation Engineering Macau University of Science and Technology Macao China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China
This letter is a brief summary of a series of IEEE TIV's decentralized and hybrid workshops (DHWs) on Federated Intelligence for Intelligent Vehicles. The discussed results are: 1) Different scales of large models... 详细信息
来源: 评论
Evaluating LLM's Code Reading Abilities in big data Contexts using Metamorphic Testing  9
Evaluating LLM's Code Reading Abilities in Big Data Contexts...
收藏 引用
9th International Conference on big data and Information Analytics, bigDIA 2023
作者: Li, Ziyu Li, Zhendu Xiao, Kaiming Li, Xuan University of Sheffield United Kingdom National University of Defense Technology College of Systems Engineering China National University of Defense Technology Laboratory for Big Data and Decision China
With the explosive growth of big data, understanding complex data-centering algorithms and software has become essential. Large Language Models (LLMs) especially ChatGPT models have been increasingly deployed in big D... 详细信息
来源: 评论
An activated variable parameter gradient‐based neural network for time‐variant constrained quadratic programming and its applications
收藏 引用
CAAI Transactions on Intelligence technology 2023年 第3期8卷 670-679页
作者: Guancheng Wang Zhihao Hao Haisheng Li Bob Zhang PAMI Research Group Department of Computer and Information ScienceUniversity of MacaoTaipaMacaoChina China Industrial Control Systems Cyber Emergency Response Team BeijingChina Beijing Key Laboratory of Big Data Technology for Food Safety Beijing Technology and Business UniversityBeijingChina
This study proposes a novel gradient‐based neural network model with an activated variable parameter,named as the activated variable parameter gradient‐based neural network(AVPGNN)model,to solve time‐varying constr... 详细信息
来源: 评论
Future Healthcare Recommender systems: Applications, Open Issues, and Challenges
Future Healthcare Recommender Systems: Applications, Open Is...
收藏 引用
2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024
作者: Ju, Hongzheng Jin, Kebing Tang, Jianhang Zhang, Yang Wang, Bo Xiong, Zehui State Key Laboratory of Public Big Data Guizhou University China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China Pillar of Information Systems Technology and Design Singapore University of Technology and Design Singapore
With the enhancement of health awareness and the development of artificial intelligent technology, healthcare recommender systems (HRS) play an increasingly important role in individual health management. Meanwhile, t... 详细信息
来源: 评论
Mutual information oriented deep skill chaining for multi‐agent reinforcement learning
收藏 引用
CAAI Transactions on Intelligence technology 2024年 第4期9卷 1014-1030页
作者: Zaipeng Xie Cheng Ji Chentai Qiao WenZhan Song Zewen Li Yufeng Zhang Yujing Zhang Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai UniversityNanjingChina College of Computer and Information Hohai UniversityNanjingChina Center for Cyber‐Physical Systems University of GeorgiaAthensGeorgiaUSA Information Networking Institute Carnegie Mellon UniversityPittsburghPennsylvaniaUSA Department of Electrical and Systems Engineering University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual ***,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that ... 详细信息
来源: 评论