Deep learning-based models are vulnerable to adversarial attacks. Defense against adversarial attacks is essential for sensitive and safety-critical scenarios. However, deep learning methods still lack effective and e...
详细信息
Deep learning-based models are vulnerable to adversarial attacks. Defense against adversarial attacks is essential for sensitive and safety-critical scenarios. However, deep learning methods still lack effective and efficient defense mechanisms against adversarial attacks. Most of the existing methods are just stopgaps for specific adversarial samples. The main obstacle is that how adversarial samples fool the deep learning models is still unclear. The underlying working mechanism of adversarial samples has not been well explored, and it is the bottleneck of adversarial attack defense. In this paper, we build a causal model to interpret the generation and performance of adversarial samples. The self-attention/transformer is adopted as a powerful tool in this causal model. Compared to existing methods, causality enables us to analyze adversarial samples more naturally and intrinsically. Based on this causal model, the working mechanism of adversarial samples is revealed, and instructive analysis is provided. Then, we propose simple and effective adversarial sample detection and recognition methods according to the revealed working mechanism. The causal insights enable us to detect and recognize adversarial samples without any extra model or training. Extensive experiments are conducted to demonstrate the effectiveness of the proposed methods. Our methods outperform the state-of-the-art defense methods under various adversarial attacks.
Diabetic retinopathy (DR), with its large patient population, has become a formidable threat to human visual health. In the clinical diagnosis of DR, multi-view fundus images are considered to be more suitable for DR ...
详细信息
We developed and validated a deep learning system (termed DeepDR Plus) in a diverse, multiethnic, multi-country dataset to predict personalized risk and time to progression of diabetic retinopathy. We show that DeepDR...
详细信息
We developed and validated a deep learning system (termed DeepDR Plus) in a diverse, multiethnic, multi-country dataset to predict personalized risk and time to progression of diabetic retinopathy. We show that DeepDR Plus can be integrated into the clinical workflow to promote individualized intervention strategies for the management of diabetic retinopathy.
Scene Graph Generation (SGG) aims to detect all objects and identify their pairwise relationships existing in the scene. Considering the substantial human labor costs, existing scene graph annotations are often sparse...
Background: Improving the accessibility of screening diabetic kidney disease (DKD) and differentiating isolated diabetic nephropathy from non-diabetic kidney disease (NDKD) are two major challenges in the field of dia...
详细信息
Background: Improving the accessibility of screening diabetic kidney disease (DKD) and differentiating isolated diabetic nephropathy from non-diabetic kidney disease (NDKD) are two major challenges in the field of diabetes care. We aimed to develop and validate an artificial intelligence (AI) deep learning system to detect DKD and isolated diabetic nephropathy from retinal fundus images. Methods: In this population-based study, we developed a retinal image-based AI-deep learning system, DeepDKD, pretrained using 734 084 retinal fundus images. First, for DKD detection, we used 486 312 retinal images from 121 578 participants in the Shanghai Integrated Diabetes Prevention and Care system for development and internal validation, and ten multi-ethnic datasets from China, Singapore, Malaysia, Australia, and the UK (65 406 participants) for external validation. Second, to differentiate isolated diabetic nephropathy from NDKD, we used 1068 retinal images from 267 participants for development and internal validation, and three multi-ethnic datasets from China, Malaysia, and the UK (244 participants) for external validation. Finally, we conducted two proof-of-concept studies: a prospective real-world study with 3 months' follow-up to evaluate the effectiveness of DeepDKD in screening DKD;and a longitudinal analysis of the effectiveness of DeepDKD in differentiating isolated diabetic nephropathy from NDKD on renal function changes with 4·6 years' follow-up. Findings: For detecting DKD, DeepDKD achieved an area under the receiver operating characteristic curve (AUC) of 0·842 (95% CI 0·838–0·846) on the internal validation dataset and AUCs of 0·791–0·826 across external validation datasets. For differentiating isolated diabetic nephropathy from NDKD, DeepDKD achieved an AUC of 0·906 (0·825–0·966) on the internal validation dataset and AUCs of 0·733–0·844 across external validation datasets. In the prospective study, compared with the metadata model, DeepDKD could detect DKD wit
暂无评论