咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 19 篇 会议

馆藏范围

  • 42 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 28 篇 工学
    • 23 篇 计算机科学与技术...
    • 21 篇 软件工程
    • 9 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 生物工程
    • 2 篇 光学工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 核科学与技术
    • 1 篇 安全科学与工程
  • 16 篇 理学
    • 9 篇 数学
    • 6 篇 物理学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
    • 1 篇 科学技术史(分学科...
  • 9 篇 管理学
    • 8 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 2 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 历史学
    • 1 篇 世界史
  • 1 篇 艺术学
    • 1 篇 艺术学理论

主题

  • 4 篇 semantics
  • 2 篇 knowledge based ...
  • 2 篇 latent semantic ...
  • 2 篇 resource managem...
  • 2 篇 computational mo...
  • 2 篇 natural language...
  • 2 篇 classification (...
  • 1 篇 covid-19
  • 1 篇 reliability
  • 1 篇 reproducibility
  • 1 篇 music informatio...
  • 1 篇 reporting practi...
  • 1 篇 computer aided l...
  • 1 篇 task analysis
  • 1 篇 job analysis
  • 1 篇 reporting standa...
  • 1 篇 hidden markov mo...
  • 1 篇 recommender syst...
  • 1 篇 neural networks
  • 1 篇 face recognition

机构

  • 5 篇 hunan provincial...
  • 4 篇 changsha social ...
  • 4 篇 school of inform...
  • 4 篇 research center ...
  • 3 篇 university of ke...
  • 3 篇 university of ch...
  • 3 篇 changchun instit...
  • 3 篇 the national mob...
  • 2 篇 the purple mount...
  • 2 篇 laboratory of hi...
  • 2 篇 center for infor...
  • 2 篇 signal processin...
  • 2 篇 the department o...
  • 2 篇 the school of co...
  • 2 篇 omron social sol...
  • 2 篇 key lab. of inte...
  • 2 篇 key lab of intel...
  • 2 篇 national enginee...
  • 1 篇 kenvak research ...
  • 1 篇 national mobile ...

作者

  • 5 篇 song dandan
  • 5 篇 jiang feibo
  • 5 篇 dong li
  • 4 篇 wang kezhi
  • 4 篇 dandan song
  • 4 篇 liu ting
  • 4 篇 liao lejian
  • 4 篇 pan cunhua
  • 3 篇 mcloughlin ian
  • 3 篇 you xiaohu
  • 3 篇 che wanxiang
  • 3 篇 phan huy
  • 3 篇 palaniappan rama...
  • 3 篇 yang kun
  • 3 篇 nguyen truc
  • 3 篇 pham lam
  • 2 篇 zhang haihong
  • 2 篇 huang zhiwu
  • 2 篇 shan shiguang
  • 2 篇 chen xilin

语言

  • 39 篇 英文
  • 3 篇 其他
检索条件"机构=Language Information Processing and Social Computing Lab"
42 条 记 录,以下是11-20 订阅
排序:
Anchor-based bilingual word embeddings for low-resource languages
arXiv
收藏 引用
arXiv 2020年
作者: Eder, Tobias Hangya, Viktor Fraser, Alexander Research Group Social Computing Technical University of Munich Germany Center for Information and Language Processing LMU Munich Germany
Good quality monolingual word embeddings (MWEs) can be built for languages which have large amounts of unlabeled text. MWEs can be aligned to bilingual spaces using only a few thousand word translation pairs. For low ... 详细信息
来源: 评论
Node transfer with graph contrastive learning for class-imbalanced node classification
收藏 引用
Neural Networks 2025年 190卷
作者: Yangding Li Xiangchao Zhao Yangyang Zeng Hao Feng Jiawei Chai Hao Xie Shaobin Fu Shichao Zhang College of Information Science and Engineering Hunan Normal University Changsha China Hunan Provincial Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China Guangxi Key Lab of Multi-Source Information Mining and Security Guangxi Normal University Guilin China
In graph representation learning, the class imbalance problem is a significant challenge that has received much attention from academics. Although current approaches have shown promising results, they have not adequat...
来源: 评论
Large Generative Model Assisted 3D Semantic Communication
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Feibo Peng, Yubo Dong, Li Wang, Kezhi Yang, Kun Pan, Cunhua You, Xiaohu Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China School of Information Science and Engineering Hunan Normal University Changsha China Changsha Social Laboratory of Artificial Intelligence Hunan University of Technology and Business Changsha China The Department of Computer Science Brunel University London United Kingdom The School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Changchun Institute of Technology China The National Mobile Communications Research Laboratory Southeast University Nanjing210096 China The Frontiers Science Center for Mobile Information Communication and Security National Mobile Communications Research Laboratory Southeast University Nanjing China The Purple Mountain Laboratories Nanjing China
Semantic Communication (SC) is a novel paradigm for data transmission in 6G. However, there are several challenges posed when performing SC in 3D scenarios: 1) 3D semantic extraction;2) Latent semantic redundancy;and ... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and language processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Large AI Model-Based Semantic Communications
arXiv
收藏 引用
arXiv 2023年
作者: Jiang, Feibo Peng, Yubo Dong, Li Wang, Kezhi Yang, Kun Pan, Cunhua You, Xiaohu Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China School of Information Science and Engineering Hunan Normal University Changsha China Changsha Social Laboratory of Artificial Intelligence Hunan University of Technology and Business Changsha China Department of Computer Science Brunel University London United Kingdom School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Changchun Institute of Technology China National Mobile Communications Research Laboratory Southeast University Nanjing210096 China
Semantic communication (SC) is an emerging intelligent paradigm, offering solutions for various future applications like metaverse, mixed reality, and the Internet of Everything. However, in current SC systems, the co... 详细信息
来源: 评论
Knowledge Base Enhanced Topic Modeling
Knowledge Base Enhanced Topic Modeling
收藏 引用
IEEE International Conference on Big Knowledge (ICBK)
作者: Dandan Song Jingwen Gao Jinhui Pang Lejian Liao Lifei Qin Lab of High Volume language Information Processing & Cloud Computing Applications School of Computer Science & Technology Beijing Institute of Technology Jianpu Technology Inc
Topic models, such as Latent Dirichlet Allocation (LDA), are successful in learning hidden topics and has been widely applied in text mining. There are many recently developed augmented topic modeling methods to utili... 详细信息
来源: 评论
Robust Deep Learning Framework for Predicting Respiratory Anomalies and Diseases  42
Robust Deep Learning Framework for Predicting Respiratory An...
收藏 引用
42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
作者: Pham, Lam McLoughlin, Ian Phan, Huy Tran, Minh Nguyen, Truc Palaniappan, Ramaswamy University of Kent School of Computing Medway Kent United Kingdom University of Science and Technology of China National Engineering Laboratory for Speech and Language Information Processing Hefei China Queen Mary University School of Electronic Engineering and Computer Science London United Kingdom University of Oxford Nuffield Department of Anaesthesia United Kingdom Graz University of Technology Signal Processing and Speech Communication Lab Austria
This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds. The complete detection process firstly involves front end feature extraction where r... 详细信息
来源: 评论
Characterizing Multi-domain False News and Underlying User Effects on Chinese Weibo
arXiv
收藏 引用
arXiv 2022年
作者: Sheng, Qiang Cao, Juan Bernard, H. Russell Shu, Kai Li, Jintao Liu, Huan Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Institute for Social Science Research Arizona State University TempeAZ United States Department of Computer Science Illinois Institute of Technology ChicagoIL United States Computer Science and Engineering Arizona State University TempeAZ United States
False news that spreads on social media has proliferated over the past years and has led to multi-aspect threats in the real world. While there are studies of false news on specific domains (like politics or health ca... 详细信息
来源: 评论
Robust acoustic scene classification using a multi-spectrogram encoder-decoder framework
arXiv
收藏 引用
arXiv 2020年
作者: Pham, Lam Phan, Huy Nguyen, Truc Palaniappan, Ramaswamy Mertins, Alfred McLoughlin, Ian University of Kent School of Computing Medway Kent United Kingdom Signal Processing and Speech Communication Lab Graz University of Technology Austria Institute for Signal Processing University of Lubeck Germany National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China Hefei China
This article proposes an encoder-decoder network model for Acoustic Scene Classification (ASC), the task of identifying the scene of an audio recording from its acoustic signature. We make use of multiple low-level sp... 详细信息
来源: 评论
Robust deep learning framework for predicting respiratory anomalies and diseases
arXiv
收藏 引用
arXiv 2020年
作者: Pham, Lam McLoughlin, Ian Phan, Huy Tran, Minh Nguyen, Truc Palaniappan, Ramaswamy University of Kent School of Computing Medway Kent United Kingdom National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China Hefei China Nuffield Department of Anaesthesia University of Oxford United Kingdom Signal Processing and Speech Communication Lab Graz University of Technology Austria
This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds. The complete detection process firstly involves front end feature extraction where r... 详细信息
来源: 评论