咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是1-10 订阅
排序:
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
收藏 引用
IEEE robotics and Automation Letters 2025年 第6期10卷 6256-6263页
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren University of Bonn Humanoid Robots Lab Bonn53113 Germany Lamarr Institute for Machine Learning and Artificial Intelligence The Center for Robotics Bonn53113 Germany Technical University of Munich Learning Systems and Robotics Lab Munchen80333 Germany
In this letter, we address the problem of behavior-based cooperative navigation of mobile robots usingsafe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论
learning More With Less: Sample Efficient Dynamics learning and Model-Based RL for Loco-Manipulation
arXiv
收藏 引用
arXiv 2025年
作者: Hoffman, Benjamin Cheng, Jin Li, Chenhao Coros, Stelian ETH Zurich Switzerland Computational Robotics Lab The Learning and Adaptive Systems Group Robotic Systems Lab ETH Zurich Switzerland
Combining the agility of legged locomotion with the capabilities of manipulation, loco-manipulation platforms have the potential to perform complex tasks in real-world applications. To this end, state-of-the-art quadr... 详细信息
来源: 评论
FlowMP: learning Motion Fields for Robot Planning with Conditional Flow Matching
arXiv
收藏 引用
arXiv 2025年
作者: Nguyen, Khang Le, An T. Pham, Tien Huber, Manfred Peters, Jan Vu, Minh Nhat Learning and Adaptive Robotics Lab University of Texas Arlington United States Intelligent Autonomous Systems Lab TU Darmstadt Germany Cognitive Robotics Lab University of Manchester United Kingdom SAIROL Darmstadt Germany Hessian.AI Darmstadt Germany TU Wien Vienna Austria GmbH Vienna Austria
Prior flow matching methods in robotics have primarily learned velocity fields to morph one distribution of trajectories into another. In this work, we extend flow matching to capture second-order trajectory dynamics,... 详细信息
来源: 评论
FrontierNet: learning Visual Cues to Explore
收藏 引用
IEEE robotics and Automation Letters 2025年 第7期10卷 6576-6583页
作者: Sun, Boyang Chen, Hanzhi Leutenegger, Stefan Cadena, Cesar Pollefeys, Marc Blum, Hermann ETH Zurich Computer Vision and Geometry Group Zurich 8092 Switzerland Technical University of Munich Mobile Robotics Lab München 80333 Germany ETH Zurich Mobile Robotics Lab Zurich 8092 Switzerland ETH Zurich Robotic Systems Lab Zurich 8092 Switzerland AI Lab Microsoft Mixed Reality Zurich 8038 Switzerland University of Bonn Lamarr Institute for ML and AI Robot Perception and Learning Lab Bonn 53115 Germany
Exploration of unknown environments is crucial for autonomous robots;it allows them to actively reason and decide on what new data to acquire for different tasks, such as mapping, object discovery, and environmental a... 详细信息
来源: 评论
GO-VMP: Global Optimization for View Motion Planning in Fruit Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Jose, Allen Isaac Pan, Sicong Zaenker, Tobias Menon, Rohit Houben, Sebastian Bennewitz, Maren Bonn-Rhein-Sieg University of Applied Sciences Germany Humanoid Robots Lab University of Bonn Germany Fraunhofer Institute for Intelligent Analysis and Information Systems Germany Humanoid Robots Lab University of Bonn Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
Automating labor-intensive tasks such as crop monitoring with robots is essential for enhancing production and conserving resources. However, autonomously monitoring horticulture crops remains challenging due to their... 详细信息
来源: 评论
Sensor Query Schedule and Sensor Noise Covariances for Accuracy-constrained Trajectory Estimation
收藏 引用
IEEE robotics and Automation Letters 2025年 第7期10卷 6983-6990页
作者: Goudar, Abhishek Schoellig, Angela P. Technical University of Munich Learning Systems and Robotics Lab Germany University of Toronto Institute for Aerospace Studies Canada University of Toronto Robotics Institute Munich Institute of Robotics and Machine Intelligence (MIRMI) Vector Institute for Artificial Intelligence Canada
Trajectory estimation involves determining the trajectory of a mobile robot by combining prior knowledge about its dynamic model with noisy observations of its state obtained using sensors. The accuracy of such a proc... 详细信息
来源: 评论
Self-Supervised learning of Scene-Graph Representations for Robotic Sequential Manipulation Planning  4
Self-Supervised Learning of Scene-Graph Representations for ...
收藏 引用
4th Conference on Robot learning, CoRL 2020
作者: Nguyen, Son-Tung Oguz, Ozgur S. Hartmann, Valentin N. Toussaint, Marc Machine Learning & Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Germany Learning and Intelligent Systems Group TU Berlin Germany
We present a self-supervised representation learning approach for visual reasoning and integrate it into a nonlinear program formulation for motion optimization to tackle sequential manipulation tasks. Such problems h... 详细信息
来源: 评论
An under actuated robotic arm with adjustable stiffness shape memory polymer joints
An under actuated robotic arm with adjustable stiffness shap...
收藏 引用
2015 IEEE International Conference on robotics and Automation, ICRA 2015
作者: Firouzeh, Amir Mirrazavi Salehian, Seyed Sina Billard, Aude Paik, Jamie Reconfigurable Robotics Lab EPFL Lausanne Switzerland Learning Algorithms and Systems Laboratory EPFL Lausanne Switzerland
Various robotic applications including surgical instruments, wearable robots and autonomous mobile robots are often constrained with strict design requirements on high degrees of freedom (DoF) and minimal volume and w... 详细信息
来源: 评论
PLAN-BASED RELAXED REWARD SHAPING FOR GOAL-DIRECTED TASKS  9
PLAN-BASED RELAXED REWARD SHAPING FOR GOAL-DIRECTED TASKS
收藏 引用
9th International Conference on learning Representations, ICLR 2021
作者: Schubert, Ingmar Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Machine Learning and Robotics Lab University of Stuttgart Germany
In high-dimensional state spaces, the usefulness of Reinforcement learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the p... 详细信息
来源: 评论
Leveraging Pretrained Latent Representations for Few-Shot Imitation learning on an Anthropomorphic Robotic Hand  23
Leveraging Pretrained Latent Representations for Few-Shot Im...
收藏 引用
23rd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2024
作者: Liconti, Davide Toshimitsu, Yasunori Katzschmann, Robert Eth Zurich Soft Robotics Lab Iris D-MAVT Switzerland Max Plank Eth Center for Learning Systems Germany
In the context of imitation learning applied to anthropomorphic robotic hands, the high complexity of the systems makes learning complex manipulation tasks challenging. However, the numerous datasets depicting human h... 详细信息
来源: 评论