咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 118 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 58 篇 计算机科学与技术...
    • 57 篇 控制科学与工程
    • 56 篇 软件工程
    • 17 篇 生物工程
    • 14 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 6 篇 电气工程
    • 5 篇 化学工程与技术
    • 5 篇 交通运输工程
    • 4 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 安全科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
  • 46 篇 理学
    • 22 篇 数学
    • 15 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 系统科学
    • 6 篇 化学
  • 9 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 6 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 13 篇 motion planning
  • 8 篇 planning
  • 5 篇 reinforcement le...
  • 5 篇 deep learning
  • 5 篇 robots
  • 5 篇 trajectory
  • 4 篇 measurement
  • 3 篇 motion estimatio...
  • 3 篇 grasping
  • 3 篇 safety
  • 3 篇 optimization
  • 3 篇 uncertainty
  • 2 篇 tools
  • 2 篇 conferences
  • 2 篇 programming
  • 2 篇 task analysis
  • 2 篇 three-dimensiona...
  • 2 篇 continuous time ...
  • 2 篇 buildings
  • 2 篇 stability analys...

机构

  • 23 篇 machine learning...
  • 8 篇 learning and int...
  • 7 篇 learning and int...
  • 7 篇 machine learning...
  • 6 篇 the learning sys...
  • 6 篇 max planck insti...
  • 4 篇 vector institute...
  • 4 篇 bosch center for...
  • 4 篇 technical univer...
  • 4 篇 the university o...
  • 4 篇 autonomous syste...
  • 4 篇 max planck insti...
  • 4 篇 the vector insti...
  • 4 篇 max planck insti...
  • 3 篇 abb corporate re...
  • 3 篇 university of ta...
  • 3 篇 max-planck insti...
  • 3 篇 max plank eth ce...
  • 3 篇 division of robo...
  • 2 篇 school of mathem...

作者

  • 27 篇 toussaint marc
  • 17 篇 schoellig angela...
  • 12 篇 mainprice jim
  • 12 篇 marc toussaint
  • 9 篇 zhou siqi
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 6 篇 angela p. schoel...
  • 6 篇 brunke lukas
  • 6 篇 kratzer philipp
  • 5 篇 siqi zhou
  • 5 篇 danny driess
  • 5 篇 hartmann valenti...
  • 4 篇 ozgur s. oguz
  • 4 篇 jim mainprice
  • 4 篇 schaal stefan
  • 4 篇 oh yoojin
  • 4 篇 bennewitz maren
  • 3 篇 pan sicong
  • 3 篇 heins adam

语言

  • 111 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Learning Systems and Robotics Lab"
118 条 记 录,以下是91-100 订阅
排序:
An under actuated robotic arm with adjustable stiffness shape memory polymer joints
An under actuated robotic arm with adjustable stiffness shap...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Amir Firouzeh Seyed Sina Mirrazavi Salehian Aude Billard Jamie Paik Amir Firouzeh and Jamie paik are with Reconfigurable Robotics Lab at EPFL Lausanne Ecole Polytechnique Federale de Lausanne Lausanne VD CH Seyed Sina Mirrazavi Salehian and Aude Billard are with Learning Algorithms and Systems Laboratory at EPFL Lausanne
Various robotic applications including surgical instruments, wearable robots and autonomous mobile robots are often constrained with strict design requirements on high degrees of freedom (DoF) and minimal volume and w... 详细信息
来源: 评论
Recurrent neural state estimation in domains with long-term dependencies  20th
Recurrent neural state estimation in domains with long-term ...
收藏 引用
20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine learning, ESANN 2012
作者: Duell, Siegmund Weichbrodt, Lina Hans, Alexander Udluft, Steffen Siemens AG Corporate Technology Intelligent Systems and Control Otto-Hahn-Ring 6 Munich81739 Germany Berlin University of Technology Machine Learning Franklinstr. 28-29 Berlin10587 Germany Otto-von-Guericke-University Magdeburg P.O.Box 4120 Magdeburg39016 Germany Ilmenau University of Technology Neuroinformatics and Cognitive Robotics Lab P.O.Box 100565 Ilmenau98684 Germany
This paper presents a state estimation approach for reinforcement learning (RL) of a partially observable Markov decision process. It is based on a special recurrent neural network architecture, the Markov decision pr... 详细信息
来源: 评论
Deep Reinforcement learning for the Joint Control of Traffic Light Signaling and Vehicle Speed Advice
Deep Reinforcement Learning for the Joint Control of Traffic...
收藏 引用
International Conference on Machine learning and Applications (ICMLA)
作者: Johannes V. S. Busch Robert Voelckner Peter Sossalla Christian L. Vielhaus Roberto Calandra Frank H. P. Fitzek Learning Adaptive Systems and Robotics (LASR) Lab TU Dresden Germany Center for Tactile Internet with Human-in-the-Loon (CeTI)‘ TU Dresden Germany Deutsche Telekom Chair of Communication Networks TU Dresden Germany Audi AG Ingolstadt Germany
Traffic congestion in dense urban centers presents an economical and environmental burden. In recent years, the availability of vehicle- to-anything communication allows for the transmission of detailed vehicle states...
来源: 评论
Safe Stop Trajectory Planning for Highly Automated Vehicles: An Optimal Control Problem Formulation
Safe Stop Trajectory Planning for Highly Automated Vehicles:...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Lars Svensson Lola Masson Naveen Mohan Erik Ward Anna Pernestål Brenden Lei Feng Martin Törngren Mechatronics and Embedded Control Systems KTH Royal Institute of Technology Stockholm Sweden LAAS-CNRS University of Toulouse Toulouse France Robotics Perception and Learning KTH Royal Institute of Technology Integrated Transport Research Lab KTH Royal Institute of Technology
Highly automated road vehicles need the capability of stopping safely in a situation that disrupts continued normal operation, e.g. due to internal system faults. Motion planning for safe stop differs from nominal mot... 详细信息
来源: 评论
On the programming effort required to generate Behavior Trees and Finite State Machines for robotic applications
On the programming effort required to generate Behavior Tree...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Matteo Iovino Julian Förster Pietro Falco Jen Jen Chung Roland Siegwart Christian Smith ABB Corporate Research Västerås Sweden Division of Robotics Perception and Learning KTH - Royal Institute of Technology Stockholm Sweden Autonomous Systems Lab ETH Zürich Zürich Switzerland School of ITEE The University of Queensland Australia
In this paper we provide a practical demonstration of how the modularity in a Behavior Tree (BT) decreases the effort in programming a robot task when compared to a Finite State Machine (FSM). In recent years the way ...
来源: 评论
learning task-specific dynamics to improve whole-body control
arXiv
收藏 引用
arXiv 2018年
作者: Gams, Andrej Mason, Sean A. Ude, Aleš Schaal, Stefan Righetti, Ludovic Humanoid and Cognitive Robotics Lab Dept. of Automatics Bio-cybernetics and Robotics Jožef Stefan Institute Ljubljana Slovenia Computational Learning and Motor Control Lab University of Southern California Los AngelesCA United States Tandon School of Engineering New York University New York United States Max Planck Institute for Intelligent Systems Tuebingen Germany
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caus... 详细信息
来源: 评论
On the programming effort required to generate Behavior Trees and Finite State Machines for robotic applications
arXiv
收藏 引用
arXiv 2022年
作者: Iovino, Matteo Förster, Julian Falco, Pietro Chung, Jen Jen Siegwart, Roland Smith, Christian ABB Corporate Research Västerås Sweden Division of Robotics Perception and Learning KTH - Royal Institute of Technology Stockholm Sweden Autonomous Systems Lab ETH Zürich Zürich Switzerland School of ITEE The University of Queensland Australia
In this paper we provide a practical demonstration of how the modularity in a Behavior Tree (BT) decreases the effort in programming a robot task when compared to a Finite State Machine (FSM). In recent years the way ... 详细信息
来源: 评论
Evaluation of an Industrial Robotic Assistant in an Ecological Environment
Evaluation of an Industrial Robotic Assistant in an Ecologic...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Baptiste Busch Giuseppe Cotugno Mahdi Khoramshahi Grigorios Skaltsas Dario Turchi Leonardo Urbano Mirko Wächter You Zhou Tamim Asfour Graham Deacon Duncan Russell Aude Billard EPFL Learning Algorithms and Systems Laboratory (LASA) Lausanne Switzerland Robotics Research Group of Ocado Technology Hatfield UK University of Hertfordshire Hatfield UK KIT High Performance Humanoid Technologies Lab (H2T) Karlsruhe Germany
Social robotic assistants have been widely studied and deployed as telepresence tools or caregivers. Evaluating their design and impact on the people interacting with them is of prime importance. In this research, we ...
来源: 评论
Where is my keyboard? Model-based active adaptation of action-space in a humanoid robot
Where is my keyboard? Model-based active adaptation of actio...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Arturo Ribes Jesus Cerquides Yiannis Demiris Ramon Lopez de Mantaras Learning Systems department at IIIA-CSIC (UAB) IIIA-CSIC (UAB) Personal Robotics Lab at the Imperial College of London
Nowadays robots are becoming more ubiquitous, and focus is increasingly put on the variety of tasks they can perform autonomously. However, due to the dynamics of the environment or the robot itself, sometimes the mod... 详细信息
来源: 评论
Preventing Unconstrained CBF Safety Filters Caused by Invalid Relative Degree Assumptions
arXiv
收藏 引用
arXiv 2024年
作者: Brunke, Lukas Zhou, Siqi Schoellig, Angela P. Learning Systems and Robotics Lab The Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich80333 Germany University of Toronto Institute for Aerospace Studies North YorkONM3H 5T6 Canada University of Toronto Robotics Institute TorontoONM5S 1A4 Canada Vector Institute for Artificial Intelligence TorontoONM5G 0C6 Canada
Control barrier function (CBF)-based safety filters are used to certify and modify potentially unsafe control inputs to a system such as those provided by a reinforcement learning agent or a non-expert user. In this c... 详细信息
来源: 评论